
General Game Playing

Introduction

Human Game Playing
• Intellectual Activity
• Skill Comparison

Game Playing

Playing strategy games like chess and checkers couples intellectual
activity with competition. By playing games, we can exercise and
improve our intellectual skills. The competition adds excitement and
allows us to compare our skills to those of others.

Human Game Playing
• Intellectual Activity
• Skill Comparison

Computer Game Playing
• Testbed for AI

Game Playing

The same motivation accounts for interest in Computer Game Playing as
a testbed for Artificial Intelligence. Programs that think better should be
able to win more games, and so we can use competitions as an
evaluation technique for intelligent systems. Unfortunately, building
programs to play specific games has limited value in AI.

Narrowness
 Good at one game, not so good at others
 Cannot do anything else

Not really testing intelligence of machine
 Programmer does all the interesting analysis / design
 Machine simply follows the recipe

Limitations of Game Playing for AI

(1) To begin with, specialized game players are very narrow. They are
often good at one game but not so good at others. Deep Blue may have
beaten the world chess champion, but it has no clue how to play
checkers; it cannot even balance a checkbook. (2) A second problem
with specialized game playing systems is that they do only part of the
work. Most of the interesting analysis and design is done in advance by
their programmers. The systems themselves might just as well be tele-
operated.

All is not lost. Many believe that the idea of game playing can be used to
good effect to inspire and evaluate good work inArtificial Intelligence, but
it requires moving more of the mental work to the computer itself. This
can be done by focussing attention on General Game Playing.

General Game Players are systems able to play
arbitrary games effectively based solely on formal
descriptions supplied at “runtime”.

Translation: They don’t know the rules until the game
starts.

Must figure out for themselves:
 legal moves, winning strategy
 in the face of uncertainty and resource bounds

General Game Playing

General game players are systems able to play arbitrary games based
solely on formal game descriptions supplied at "runtime". In a typical
general game playing session, the players know nothing about the game
in advance. Once the game begins, they receive a game description.
Based solely on this description, they must figure out how to play the
game legally and effectively. Furthermore, they must deal with
uncertainty (about the actions of the other players) and resource bounds
(in the form of a game clock that limits their computation time).

Unlike specialized game players (e.g. Deep Blue), they
do not use algorithms designed in advance for specific
games.

Artificial Intelligence Technologies
 knowledge representation
 deduction, reformulation, induction, …
 rational behavior w/ uncertainty, resource bounds

Technology

Given this arrangement, general game players cannot rely on algorithms
designed in advance for specific games. General game playing expertise
depends on intelligence on the part of the game player and not just
intelligence of the programmer of the game player. In order to perform
well, general game players typically incorporate ideas from multiple
subareas of Artificial Intelligence technologies, such as knowledge
representation, reasoning, and rational decision making.

Variety of Games

The upshot is that general game players are able to play different kinds of
games. They can play simple games (like Tic-Tac-Toe) and complex
games (like Chess). Games with simultaneous play (like Diplomacy) and
games with alternating play (like Risk). Games with complete information
or games with incomplete information (e.g. Battleship). Games with
different numbers of players (Blocks World, Chess, Chinese Checkers).
Games with or without communication among the players (e.g. Bughouse
Chess). Zero-sum games and cooperative games.

International GGP Competition

/42

Annual GGP Competition
 Held at AAAI or IJCAI conference
 Administered by Stanford University
 (Stanford folks not eligible to participate)

Annual GGP Competition

The main driving force of the General Game Playing community is the
annual International General Game Playing competition. The competition
is typically held in conjunction with the national conference on Artificial
Intelligence sponsored by the AAAI (the Association for the Advancement
of Artificial Intelligence) or the biennial IJCAI (the International
Conference on Artificial Intelligence). It is administered by Stanford
University, so those of you at Stanford are not eligible to participate.

/42

Winners
 2005 - ClunePlayer - Jim Clune (USA)
 2006 - FluxPlayer - Schiffel, Thielscher (Germany)
 2007 - CadiaPlayer - Bjornsson, Finsson (Iceland)
 2008 - CadiaPlayer - Bjornsson, Finsson (Iceland)
 2010 - Ary - Mehat (France)
 2011 - TurboTurtle - Schreiber (USA)
 2012 - CadiaPlayer - Bjornsson, Finsson (Iceland)
 2013 - TurboTurtle - Schreiber (USA)

History

The competition began in 2005 and has run annually ever since (with the
exception of 2009), and it has been won by players from various different
countries - including the US, Germany, France, and Iceland.

/42

GGP-05 Winner Jim Clune

Here is a photo of Jim Clune (the winner of the first GGP competition)
being congratulated by the AAAI president Ron Brachman. He was
obviously pleased at his player having won. However, that smile might be
due in part to the $10,000 he received for winning the competition.

/42

GGP-06 Winners

Here we have Michael Thielscher and Stephan Schiffel - winners of the
competition at AAAI-06.

/42

GGP-07, GGP-08, GGP-12 Winners

On the left, Hilmar Finsson and Yngve Bjornsson, the winners in 2007,
2008, and 2012, together with Stephan Schiffel and Michael Thielscher,
the winners in 2006, and Jim Clune, the winner in 2005.

/42

GGP-11, GGP-13 Winner

Here we have Hilmar Finsson congratulating a beaming Sam Schreiber at
the end of GGP-11.

/54

Other Games, Other Winners

The contests are exciting, and even the spectators get in on the action.
Without getting into specifics, let me just say that some people have
come away from these competitions wealthier than beforehand.

/42

Carbon versus Silicon

In addition, to the regular GGP competition, there is now an annual battle
between Carbon and Silicon. Unfortunately for us, the humans are not
doing that well.

/42

Human Race Being Defeated

For example, in 2012, CadiaPlayer handily defeated the human race
(represented by Chris Welty shown here with some advisors). In keeping
with the double-elimination format of the competition, the contestants
played two different games. In the first, CadiaPlayer handily defeated the
human in a well-played match of Dual Connect 4. It then won a match of
Platform Jumpers. As a consolation prize, the human was awarded two
bottles of Scotch, in part to ease his disappointment at letting down the
human race.

Game Description

Environment
 Environment with finitely many states
 One initial state and one or more terminal states
 Each state has a unique goal value for each player

Players
 Fixed, finite number of players
 Each with finitely many moves

Dynamics
 Finitely many steps
 All players move on all steps (some no ops)
 Environment changes only in response to moves

Finite Synchronous Games

Despite the variety of games treated in General Game Playing, all games
share a common abstract structure. Each game takes place in an
environment with finitely many states, with one distinguished initial state
and one or more terminal states. In addition, each game has a fixed, finite
number of players; each player has finitely many possible actions in any
game state, and each state has an associated goal value for each player.
The dynamic model for general games is synchronous update: all players
move on all steps (although some moves could be "no-ops"), and the
environment updates only in response to the moves taken by the players.

/42

a

a

b a

ab

b b

0 50 50 100

0 25 25 50

a ab ba a

s1 s2 s3 s4

s5 s6 s7 s8

Single Player Game

Given this common structure, we can think of a game as a state graph,
like the one shown here. In this case, we have a game with one player,
with eight states (named s1, ... , s8), with one initial state (s1), with two
terminal states (s4 and s8). The numbers associated with each state
indicate the values of those states. The arcs in this graph capture the
transition function for the game. For example, if the game is in state s1
and the player does action a, the game will move to state s2. If the player
does action b, the game will move to state s5.

/42

a

a / a

a / a

a / a a / a

a / aa / a

b / a a / b

0 / 0 50 / 50 50 / 50 100 / 0

0 / 0 25 / 25 25 / 25 0 / 100

b / a a / bb / a a / bb / a a / b

s1 s2 s3 s4

s5 s6 s7 s8

Multiple Player Game

In the case of multiple players with simultaneous moves, the arcs become
multi-arcs, with one arc for each combination of the players' actions.
Here is an example of a simultaneous move game with two players. If in
state s1 both players perform action a, we follow the arc labelled a / a. If
the first player does b and the second player does a, we follow the b / a
arc. We also have different goals for the different players. For example,
in state s4, player 1 gets 100 points whereas player 2 get 0 points; and, in
state s8, the situation is reversed.

23

Good News: Since all of the games that we are
considering are finite, it is possible in principle to
communicate game information in the form of state
graphs.

Direct Description

The state graph captures the essential information about a game. Since
all of the games that we are considering are finite, it is possible, in
principle, to describe such games in the form of state graphs.

24

Problem: Size of description. Even though everything is
finite, these sets can be large.

Solution:
 Exploit regularities / structure in state graphs
 to produce compact encoding

Problem and Solution

Unfortunately, such explicit representations are not practical in all cases.
Even though the numbers of states and actions are finite, these sets can
be extremely large; and the corresponding graphs can be larger still. For
example, in chess, there are thousands of possible moves and more than
10^30 states. Fortunately, we can solve this problem by exploiting
regularities in the game to produce compact encodings.

Monolithic states –» structured states

Monolithic actions –» structured actions

 a –» f(a,b)

25

p(a)
p(b)
q(a,b)

s4 –»

Structured States and Actions

In practice, we rarely think of states as monolithic entities. More
frequently, we characterize states in terms of propositions that are true in
those states. Similarly, actions often have structure.

/42

a

f(a)

p(a)
p(b)
q(b,a)

p(b)
q(b,a)

p(a)
q(b,a)q(b,a)

p(a)
p(b)
q(a,b)

p(b)
q(a,b)

p(a)
q(a,b)q(a,b)

f(a)

f(b) f(a)

f(a)f(b)

f(b) f(b)

0 50 50 100

0 25 25 50

f(b) f(b)f(b) f(b)f(b) f(b)

Structured State Machine

This leads to the notion of a structured state machine like the one shown
here. The overall structure is the same as in the simple state machine
shown earlier, but in this case, we have revealed the structure of the
states. Now, by itself this does not help us since the graph is the same
size as before. However, actions frequently affect only some of the
propositions that are true in states and leave others unchanged. By
exploiting these limitations on the effects of actions, we can often encode
state graphs compactly by writing logical rules in place of explicit graphs.

Game Description Language (or GDL) is a formal
language for encoding the rules of games.

Game rules written as sentences in Symbolic Logic.

GDL is widely used in the research literature and is used
in virtually all General Game Playing competitions.

GDL extensions are applicable in real-world applications
such as Enterprise Management and Computational Law.

Game Description Language

GDL is a formal language for encoding games in this way. As we shall
see, it is based on Symbolic Logic. It is widely used in the research
literature and is used in virtually all General Game Playing competitions.
Moreover, it forms the basis for some more expressive variants that have
significant value in real-world applications, such as Enterprise
Management and Computational Law.

role(x)
role(o)

init(cell(1,1,b))
init(cell(1,2,b))
init(cell(1,3,b))
init(cell(2,1,b))
init(cell(2,2,b))
init(cell(2,3,b))
init(cell(3,1,b))
init(cell(3,2,b))
init(cell(3,3,b))
init(control(x))

legal(P,mark(X,Y)) :-
 true(cell(X,Y,b)) &
 true(control(P))

legal(x,noop) :-
 true(control(o))

legal(o,noop) :-
 true(control(x))

next(cell(M,N,P)) :-
 does(P,mark(M,N))

next(cell(M,N,Z)) :-
 does(P,mark(M,N)) &
 true(cell(M,N,Z)) & Z!=b

next(cell(M,N,b)) :-
 does(P,mark(J,K)) &
 true(cell(M,N,b)) &
 distinct(M,J)

next(cell(M,N,b)) :-
 does(P,mark(J,K)) &
 true(cell(M,N,b)) &
 distinct(N,K)

next(control(x)) :-
 true(control(o))

next(control(o)) :-
 true(control(x))

terminal :- line(P)
terminal :- ~open

goal(x,100) :- line(x) & ~line(o)
goal(x,50) :- ~line(x) & ~line(o)
goal(x,0) :- ~line(x) & line(o)
goal(o,100) :- ~line(x) & line(o)
goal(o,50) :- ~line(x) & ~line(o)
goal(o,0) :- line(x) & ~line(o)

row(M,P) :-
 true(cell(M,1,P)) &
 true(cell(M,2,P)) &
 true(cell(M,3,P))

column(N,P) :-
 true(cell(1,N,P)) &
 true(cell(2,N,P)) &
 true(cell(3,N,P))

diagonal(P) :-
 true(cell(1,1,P)) &
 true(cell(2,2,P)) &
 true(cell(3,3,P))

diagonal(P) :-
 true(cell(1,3,P)) &
 true(cell(2,2,P)) &
 true(cell(3,1,P))

line(P) :- row(M,P)
line(P) :- column(N,P)
line(P) :- diagonal(P)

open :-
true(cell(M,N,b))

Tic-Tac-Toe

Example

Here we see an example of GDL, in this case the rules for the game of
Tic-Tac-Toe. We discuss the specifics of GDL in our next lesson. For
now, the details are unimportant. The one thing to note here is that this
one page of rules fully describes a game of thousands of states. That’s a
significant saving over the state graph. The improvement in more
complex games can be even more dramatic. For example, it is possible
to describe the rules of Chess in just four pages of rules like these.

Game Management

/54

Game Management is the process of administering a
game in General Game Playing.

Match = instance of a game.

Components:
 Game Manager
 Game Playing Protocol

Game ManagementGame Management

Game Management is the process of administering a game in a general
game playing setting. More properly, it should be called match
management, as the issue is how to manage individual matches of
games, not the games themselves. However, everyone seems to use the
phrase “Game Management”, and so we are stuck with it. In this
segment, we start with an overview of the General Game Playing
environment illustrating the central role of the Game Manager. We then
discuss the General Game Playing communication protocol.

Game ManagerGame Manager

Here is a diagram of a typical general game playing ecosystem. At the
center of the ecosystem is the game manager. The game manager
maintains a database of game descriptions, maintains some temporary
state for matches while they are running, and maintains a database of
match results. The game manager communicates with game players
using the Internet’s TCP/ip protocol. It also provides a user interface for
users who want to schedule matches, and it provides graphics for
spectators watching matches in progress.

The process of running a match goes as follows. Upon receiving a
request to run a match, the Game Manager's first sends a start message
to each player to initiate the match. Once game play begins, it sends play
messages to each player to obtain their moves and simulates the results.
This part of the process repeats until the game is over. The Manager then
sends stop messages to each player.

/54

Start
 Manager sends Start message to players
 Start(id, role, description, startclock, playclock)

Game Playing ProtocolGeneral Game Playing Protocol

The start message lists the name of the match, the role the player is to
assume (e.g. white or black in chess), a formal description of the
associated game (in GDL), and the start clock and play clock associated
with the match. The start clock determines how much time remains before
play begins. The play clock determines how much time each player has to
make each move once play begins. Upon receiving a start message,
each player sets up its data structures and does whatever analysis it
deems desirable in the time available. It then replies to the Game
Manager that it is ready for play. Having sent the start message, the
game manager waits for replies from the players. Once it has received
these replies OR once the start clock is exhausted,

/54

Start
 Manager sends Start message to players
 Start(id, role, description, startclock, playclock)

Play
 Manager sends Play messages to players
 Play(id, actions)
 Receives plays in response

General Game Playing Protocol

On each step, the Game Manager sends a play message to each player.
The message includes information about the actions of all players on the
preceding step. (On the first step, the argument is nil.) On receiving a
play message, players spend their time trying to decide their moves. They
must reply within the amount of time specified by the match's play clock.
The Game Manager waits for replies from the players. If a player does
not respond before the play clock is exhausted, the Game manager
selects an arbitrary legal move. In any case, once all players reply or the
play clock is exhausted, the Game manager takes the specified moves or
the legal moves it has determined for the players and determines the next
game state. It then evaluates the termination condition to see if the game
is over. If the game is not over, the game manager sends the moves of
the players to all players and the process repeats.

/54

Start
 Manager sends Start message to players
 start(id, role, description, startclock, playclock)

Play
 Manager sends Play messages to players
 play(id, actions)
 Receives plays in response

Stop
 Manager sends Stop message to players
 stop(id, actions)

General Game Playing Protocol

Once a game is determined to be over, the Game Manager sends a stop
message to each player with information about the last moves made by
all players. The stop message allows players to clean up any data
structures for the match. The information about previous plays is supplied
so that players with learning components can profit from their experience.
Having stopped all players, the Game manager then computes the
rewards for each player, stores this information together with the play
history in its database, and ceases operation.

Game Playing

Logical reasoning in searching game tree:
 Initial state
 Legal actions for each player in each state
 State resulting from execution of legal action
 Value of each state for each player
 Determination of whether state is terminal

Easy to convert from logic to other representations
 Simplicity of logical formulation
 Simple, widely published algorithms
 3-4 orders or magnitude speedup
 no asymptotic change

Game Playing

Having a formal description of a game is one thing; being able to use that
description to play the game effectively is something else entirely. The player
must be able to compute the initial state of the game. It must be able to
compute which moves are legal in every state. It must be able to determine
the state resulting from a particular combination of moves It must be able to
compute the value of each state for each player. And it must be able to
determine whether any given state is terminal.

Since game descriptions are written in symbolic logic, it is obviously necessary
for a game player to do some amount of automated reasoning. There are two
extremes here. (1) One possibility is for the game player to process the game
description interpretively throughout a game. (2) The second possibility is for
the player to use the description to devise a specialized program and then use
that program to play the game. This is effectively automatic programming. As
this is just an introduction, we will discuss the first possibility and leave it to you
to think about the second possibility and various hybrid approaches.

Initial State

To start with, a player can use the game description to determine the initial
state. In the case of Tic-Tac-Toe, we have a board with nine empty cells.

White’s moves: Black’s moves:
 mark(1,1) noop
 mark(1,2)
 mark(1,3)
 mark(2,1)
 mark(2,2)
 mark(2,3)
 mark(3,1)
 mark(3,2)
 mark(3,3)

Legal Moves

Given a state, like the one we just saw, a player can use the game
description to compute the legal moves for each of the players. In this
case, the white player can mark any of the nine cells. And the black player
do nothing; in other words, it must execute the noop action.

 mark(1,3)

 noop

X

State Update

Given a state and the players' actions, a player can compute the next
state using the update rules. In the case shown here, if the white player
plays the mark(1,3) action in the initial state, the result is a state in which
there is an X in the upper right corner.

X O X

O X
O

X O X

O X
OX

X O X

O X
O X

X O X

O X
O
X

Game Tree Expansion

One way for a player to decide on a course of action in a match is to use
these two computations repeatedly to expand the game tree. Starting in
a known state, it computes the legal actions for itself and its opponents,
as previously discussed. For each combination of actions of the players,
it simulates the actions to obtain the next state and thereby expand the
tree. Here we see the TTT tree expanded one level.

X O X

O

X O X

O X
OX

X O X

O X
O X

X O X

O X
O
X

X O X

O X
O

X O X

O X

X O X

O
X

X O X

O
X

X O X

O
X

X O X

O X

Game Tree Search

Repeating this, a player can expand the tree to two levels, three levels, and so
forth, until it encounters terminal states on every branch, such as the one here in
the middle of the bottom row. By examining the various branches, it can choose
the one that produces the best payoff. Of course, this choice depends on the
move of the other players, and it must consider all possible opponent moves or
make some assumptions about things that the other players will or will not do. In
principle, this procedure allows a player to identify the best possible strategy to
play the game.

Large state spaces
 ~5000 states in Tic-Tac-Toe
 >1030 states in Chess

Limited Resources
 Memory
 Time (start clock, move clock)

Resource Limitations

Unfortunately, even in cases where there is a clearcut solution, the tree
may be so large as to make it practically impossible for any player to
expand the game tree. In TTT, there are just 5000 states, a manageable
number; but there are more than 10^30 states in chess. Using this
approach, the player would run out of time and memory long before
finishing.

Incremental Search
 Expand Game Graph incrementally
 As much as time allows
 Minimax/etc. evaluation on non-terminal states
 using an evaluation function of some sort

But how do we evaluate non-terminal states?

In traditional game playing, the rules are known in
advance; and the programmer can invent game-
specific evaluation functions. Not possible in GGP.

Incremental Search

The alternative is to do incremental search, on each move expanding the
tree as much as possible and then making a choice based on the
apparent value of non-terminal states. In traditional game playing, where
the rules are know in advance, the programmer can invent game-specific
evaluation functions to help in this regard. For example, in chess, we
know that states with higher piece count and greater board control are
better than ones with less material or lower control. Unfortunately, it is
not possible for a GGP programmer to invent such game-specific rules in
advance, as the game's rules are not known until the game begins. The
program must evaluate states for itself.

Ideas
* Novelty with reversibility
* Goal-monotonic observables
* Bad states, useless moves
 <insert your good idea here>

Guaranteed Evaluation Functions

The good news is that there are some evaluation techniques that always
work. For example, there is no harm preferring new states to states that
have previously been seen, provided that there is a way to get back to the
original states. Also, if a player is able to determine that some observable
condition corresponds to distance from the goal, then it is good to
minimize that quantity. Suppose the player were in a cave trying to get
out. If it saw a brighter light in one tunnel than another, it might go for the
brighter light. Finally, there are some states that can be determined to be
bad even if other states are not known to be good. For example,
stepping off the roof of a tall building is probably not the best way to get to
the store (at least not in the real world).

Ideas
 Goal proximity (everyone)
 Maximize mobility (Barney Pell)
 Minimize opponent’s mobility (Jim Clune)
 <insert your good idea here>

Non-Guaranteed Evaluation Functions

Another possibility is to use non-guaranteed heuristics. A number of such heuristics have been
proposed over the years.

Goal proximity is an example. Proponents of this heuristic argue that, all other things being
equal, it is a good idea to prefer states that are closer to goal states than states that are farther
away. Distance here is usually judged by similarity between states, that is the number of facts in
common in the descriptions of the two states.

Mobility is another general heuristic. Proponents argue that, all other things being equal, it is
better to move to a state that affords the player greater mobility, that is more possible actions.
Better than being boxed into a corner. Symmetrically, proponents of mobility argue that it is good
to minimize the mobility of one's opponents.

All of these heuristics have been shown to be effective in some games. Unfortunately, they are
only heuristics. They frequently fail, sometimes with comical consequences.

GGP-06 Final - Cylinder Checkers

The final match of GGP-06 is an example. The game was cylinder
checkers, i.e. checkers played on a cylinder. Recall that, in checkers, a
player is permitted to move one of his ordinary pieces (pieces that are not
kings) one square forward on each turn. Here red is moving from top to
bottom and black is moving from bottom to top. If a piece is blocked by
an opponent's player, he can "jump" that player if there is an empty
square on the other side. Moreover, the player *must* make such a jump
if one is available. The objective of the game is to take all or as many of
the opponent's pieces as possible while preserving one's own pieces.
Here is a snapshot of the game. It is red's turn to play. What should he
do? And what do you think he did?

GGP-06 Final - Cylinder Checkers

Here’s a hint. The player in this case was Cluneplayer, and it had
decided, for some reason or other, that limiting the opponent’s mobility
was a good heuristic. If it were to move the rearmost piece, black would
have multiple moves. However, if it were to move the piece in front, black
would be forced to capture its piece. In other words, it would have at
most one move. Clearly, moving the forward piece minimizes the
opponent's mobility, so that is what Cluneplayer did. Actually, the whole
match played out this way, with red giving black captures at every
opportunity. It was sad to watch but also a little comical. The moral is
that, while non-guaranteed heuristics are sometimes useful, they are not
always useful.

48

25 50 0 75

100 0 0 0 0 100 100 0 0 0 0 0 100 0 100 100

Monte Carlo

An alternative to evaluation functions like these is Monte Carlo Search.
The basic idea of is simple. The player expands the tree a few levels.
Then, rather than using a local heuristic to evaluate a state, it makes
some probes from that state to the end of the game by selecting random
moves for all players. It sums up the total rewards for all such probes and
divides by the number of probes to obtain an estimated utility for that
state. It can then use these expected utilities in comparing states and
selecting actions. Monte Carlo and its variants have proven highly
successful in general game playing, and virtually every general game
playing program today uses some variant of Monte Carlo search.

Metagaming is the process of reasoning about games and, by
extension, game players and game playing.

Extremely broad definition:
 game design and game analysis
 games in general as well as specific games
 what programmers do in creating specific / general players

Done offline, i.e. during the start clock or between moves or
in parallel with regular game play.

Metagaming

This discussion of game tree search and heuristics reveals just how
difficult the GGP problem is. Monte Carlo works amazingly well, but it too
breaks down badly in certain cases. Fortunately, there is another,
complementary approach to general game playing that has tremendous
power, and that is *metagaming*.

Metagaming is problem solving in the world of games. It involves
reasoning about games and, by extension, game players and game
playing. As stated, this is an extremely general definition. It includes both
game design and game analysis. It includes reasoning about games in
general as well as reasoning about specific games and specific matches of
specific games. Significantly, it includes what programmers do in devising
programs to play specific games as well as what programmers do in
devising general game playing programs. Metagaming is usually done
offline, during the brief period after a player receives the game rules and
game play begins; or sometimes it is done in parallel with game tree
search.

50

Differences from Game tree search
 more information
 less information, i.e. more general
 goal - create / optimize player to play games effectively

Techniques:
 Analysis of propositional nets and rule graphs
 Proofs using logic
 Compilation into machine language and/or FPGAs

Metagaming Specifics

In General Game Playing, we are primarily interested in those types of metagaming that can be automated. This raises the question of
the distinction between ordinary game playing and metagaming. Can we distinguish the two? It is not that easy, but there is a
difference. To begin with, ordinary game tree search can be viewed as a degenerate form of metagaming, one in which the metagamer
must find the best actions for a specific role in a specific game starting in a specific state. By contrast, in some cases, metagaming
sometimes involves information and goals that are different from the specifics of game tree search.

* To begin with, metagaming can take into account information other than the game description. For example, it might take into account
its past experience. For example, in a round robin tournament where total return matters, it might select a different strategy than in an
elimination ladder, where beating the opponent's score is what matters most.

* Metagaming is also sometimes done with *less* information than is used in match play, e.g. without information about role, initial state,
goals, or termination. As a result, metagaming is more general, deriving conclusions that apply across different games and different
players.

* The goal of metagaming is broader than that of game tree search. It is not so much concerned with selecting the actions of a specific
player in a specific game, but rather it is concerned with devising a game tree search program or optimizing an existing program to
search the game tree (without actually searching the tree itself).

Whether or not the concept of automated metagaming can be distinguished from game tree search, there is no doubt that the concept is
used to good effect in many general game playing programs.

Hodgepodge = Chess + Othello

	

 Branching factor: a	

 	

 Branching factor: b

Analysis of joint game:
 Branching factor as given to players: a*b
 Fringe of tree at depth n as given: (a*b)n

 Fringe of tree at depth n factored: an+bn

Hodgepodge

One example of metagaming is game decomposition, also called factoring.
Consider the game of Hodgepodge. Hodgepodge is actually two games
glued together. Here we show chess and othello, but it could be any two
games. One move in a joint game of Hodgepodge corresponds to one
move in each of the two constituent games. Winning requires winning at
least one of the two games while not losing the other. What makes
Hodgepodge interesting is that it is factorable, that is it can be divided into
two independent games. Realizing this can have dramatic benefit. To see
this, consider the size of the game tree for hodgepodge. Suppose that
one game tree has branching a and the other has branching factor b.
Then the branching factor of the joint game is a times b, and the size of
the fringe of the game tree at level n is (a*b)^n. However, the two games
are independent. Moving in one subgame does not affect the state of the
other subgame. So, the player really should be searching two smaller
game trees, one with branching factor a and the other with branching
factor b. In this way, at depth n, there would be only a^n+b^n states. This
is a huge decrease in the size of the search space.

Finding Interesting Structure in Games:
 Factoring, e.g Hodgepodge
 Bottlenecks, e.g. Triathalon
 Symmetry detection, e.g. Tic-Tac-Toe
 Dead State Removal

Trade-off - cost of finding structure vs savings
 Sometimes cost proportion to size of description
 Sometimes savings proportional to size of the game tree

Reformulation Opportunities

Factoring is just one example of game reformulation. There are many
others. For example, it is sometimes possible to find symmetries in games
that cut down on search space. In some games, there are bottlenecks that
allow for a different type of factoring. Consider, for example, a game made
up of one or more subgames in which it is necessary to win one game
before moving on to a second game. In such a case, there is no need to
search to a terminal state in the overall game; it is sufficient to limit search
to termination in the current subgame. These examples are extreme
cases, but there are many simpler everyday examples of finding structure
of this sort that can help in curtailing search.

The trick in metagaming is to analyze and/or reformulate a game without
expanding the entire game tree. The interesting thing about general game
playing is this - that sometimes the cost of analysis is proportional to the
size of the description rather than the size of the game tree, as in teh
examples we have just seen. In such cases, players can expend a little
time and gain a lot in search savings.

Philosophical Remarks

Critique: Game playing is frivolous.

Serious Applications:
 Enterprise Management
 Computational Law

Funders:
 Darpa
 SAP

General Game Playing is not a game

As we shall see, GGP is an interesting application in its own right. It is
intellectually engaging and more than a little fun. But it is much more than that. It
serves an analog for applications of logic in other areas, such as business and law,
science and engineering. More fundamentally, it raises questions about the nature
of intelligence and serves as a laboratory in which to evaluate competing
approaches to artificial intelligence.

Characteristics of GGP
 game descriptions contain full information
 which determine optimal behavior

Useful for evaluating theories of intelligence
 effects of representation
 incompleteness of information
 resource bounds

Testbed for Theories of Intelligence

More fundamentally, general game playing has value as a testbed for theories of
intelligence. Game descriptions provide full information about a world and
determine optimal strategies as a baseline for evaluating agent behavior. By its
nature, the GGP setting can be used to evaluate problem solving strategies and by
extension theories of intelligence, by taking into account representation,
incompleteness of information, and resource bounds.

The main advantage we expect the advice taker to have
is that its behavior will be improvable merely by
making statements to it, telling it about its …
environment and what is wanted from it. To make these
statements will require little, if any, knowledge of the
program or the previous knowledge of the advice taker.

John McCarthy

It was in 1958 that John McCarthy invented the concept of the "advice taker". The
idea was simple. He wanted a machine that he could program by description. He
would describe the intended environment and the desired goal, and the machine
would use that information in determining its behavior. There would be no
programming in the traditional sense. McCarthy presented his concept in a paper
that has become a classic in the field of AI. ... READ

The potential use of computers by people to accomplish
tasks can be “one-dimensionalized” into a spectrum
representing the nature of the instruction that must be
given the computer to do its job. Call it the what-to-
how spectrum. At one extreme of the spectrum, the
user supplies his intelligence to instruct the machine
with precision exactly how to do his job step-by-step. ...
At the other end of the spectrum is the user with his real
problem. ... He aspires to communicate what he wants
done ... without having to lay out in detail all necessary
subgoals for adequate performance.

Ed Feigenbaum

An ambitious goal! But that was a time of high hopes and grand ambitions. The
idea caught the imaginations of numerous subsequent researchers -- notably Bob
Kowalski, the high priest of logic programming, and Ed Feigenbaum, the inventor
of knowledge engineering. In a paper written in 1974, Feigenbaum gave his most
forceful statement of McCarthy's ideal. ... READ

A human being should be able to change a diaper, plan
an invasion, butcher a hog, conn a ship, design a
building, write a sonnet, balance accounts, build a
wall, set a bone, comfort the dying, take orders, give
orders, cooperate, act alone, solve equations, analyze a
new problem, pitch manure, program a computer, cook
a tasty meal, fight efficiently, die gallantly.
Specialization is for insects.

computer/robot
v

Robert Heinlein

One final remark. Some have argued that the way to achieve intelligent behavior
is through specialization. That may work so long as the assumptions one makes in
building such systems are true. For general intelligence, however, general
intellectual capabilities are needed, and such systems should be capable of
performing well in a wide variety of tasks. To paraphrase the words of Robert
Heinlein ... READ ... Those of us who are more interested in artificial intelligence
than artificial insects agree with Heinlein.

60

