
General Game Playing



Introduction



Human Game Playing
• Intellectual Activity
• Skill Comparison

Game Playing

Playing strategy games like chess and checkers couples intellectual 
activity with competition.  By playing games, we can exercise and 
improve our intellectual skills.  The competition adds excitement and 
allows us to compare our skills to those of others.



Human Game Playing
• Intellectual Activity
• Skill Comparison

Computer Game Playing
• Testbed for AI

Game Playing

The same motivation accounts for interest in Computer Game Playing as 
a testbed for Artificial Intelligence.  Programs that think better should be 
able to win more games, and so we can use competitions as an 
evaluation technique for intelligent systems.  Unfortunately, building 
programs to play specific games has limited value in AI.



Narrowness
   Good at one game, not so good at others
   Cannot do anything else

Not really testing intelligence of machine
   Programmer does all the interesting analysis / design
   Machine simply follows the recipe

Limitations of Game Playing for AI

(1) To begin with, specialized game players are very narrow.  They are 
often good at one game but not so good at others.  Deep Blue may have 
beaten the world chess champion, but it has no clue how to play 
checkers; it cannot even balance a checkbook.  (2) A second problem 
with specialized game playing systems is that they do only part of the 
work.  Most of the interesting analysis and design is done in advance by 
their programmers.  The systems themselves might just as well be tele-
operated.

All is not lost.  Many believe that the idea of game playing can be used to 
good effect to inspire and evaluate good work inArtificial Intelligence, but 
it requires moving more of the mental work to the computer itself.  This 
can be done by focussing attention on General Game Playing.



General Game Players are systems able to play 
arbitrary games effectively based solely on formal 
descriptions supplied at “runtime”.

Translation: They don’t know the rules until the game 
starts.

Must figure out for themselves:
    legal moves, winning strategy
    in the face of uncertainty and resource bounds

General Game Playing

General game players are systems able to play arbitrary games based 
solely on formal game descriptions supplied at "runtime".  In a typical 
general game playing session, the players know nothing about the game 
in advance.  Once the game begins, they receive a game description.  
Based solely on this description, they must figure out how to play the 
game legally and effectively.  Furthermore, they must deal with 
uncertainty (about the actions of the other players) and resource bounds 
(in the form of a game clock that limits their computation time).



Unlike specialized game players (e.g. Deep Blue), they 
do not use algorithms designed in advance for specific 
games.

Artificial Intelligence Technologies
    knowledge representation
    deduction, reformulation, induction, …
    rational behavior w/ uncertainty, resource bounds

Technology

Given this arrangement, general game players cannot rely on algorithms 
designed in advance for specific games.  General game playing expertise 
depends on intelligence on the part of the game player and not just 
intelligence of the programmer of the game player.  In order to perform 
well, general game players typically incorporate ideas from multiple 
subareas of Artificial Intelligence technologies, such as knowledge 
representation, reasoning, and rational decision making.



Variety of Games

The upshot is that general game players are able to play different kinds of 
games.  They can play simple games (like Tic-Tac-Toe) and complex 
games (like Chess).  Games with simultaneous play (like Diplomacy) and 
games with alternating play (like Risk).  Games with complete information 
or games with incomplete information (e.g. Battleship).  Games with 
different numbers of players (Blocks World, Chess, Chinese Checkers).  
Games with or without communication among the players (e.g. Bughouse 
Chess).  Zero-sum games and cooperative games.



International GGP Competition
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Annual GGP Competition
    Held at AAAI or IJCAI conference
    Administered by Stanford University
    (Stanford folks not eligible to participate)

Annual GGP Competition

The main driving force of the General Game Playing community is the 
annual International General Game Playing competition.  The competition 
is typically held in conjunction with the national conference on Artificial 
Intelligence sponsored by the AAAI (the Association for the Advancement 
of Artificial Intelligence) or the biennial IJCAI (the International 
Conference on Artificial Intelligence).  It is administered by Stanford 
University, so those of you at Stanford are not eligible to participate.
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Winners
    2005 - ClunePlayer - Jim Clune (USA)
    2006 - FluxPlayer - Schiffel, Thielscher (Germany)
    2007 - CadiaPlayer - Bjornsson, Finsson (Iceland)
    2008 - CadiaPlayer - Bjornsson, Finsson (Iceland)
    2010 - Ary - Mehat (France)
    2011 - TurboTurtle - Schreiber (USA)
    2012 - CadiaPlayer - Bjornsson, Finsson (Iceland)
    2013 - TurboTurtle - Schreiber (USA)

History

The competition began in 2005 and has run annually ever since (with the 
exception of 2009), and it has been won by players from various different 
countries - including the US, Germany, France, and Iceland.
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GGP-05 Winner Jim Clune

Here is a photo of Jim Clune (the winner of the first GGP competition) 
being congratulated by the AAAI president Ron Brachman.  He was 
obviously pleased at his player having won.  However, that smile might be 
due in part to the $10,000 he received for winning the competition.
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GGP-06 Winners

Here we have Michael Thielscher and Stephan Schiffel - winners of the 
competition at AAAI-06.
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GGP-07, GGP-08, GGP-12 Winners

On the left, Hilmar Finsson and Yngve Bjornsson, the winners in 2007, 
2008, and 2012, together with Stephan Schiffel and Michael Thielscher, 
the winners in 2006, and Jim Clune, the winner in 2005.
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GGP-11, GGP-13 Winner

Here we have Hilmar Finsson congratulating a beaming Sam Schreiber at 
the end of GGP-11.
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Other Games, Other Winners

The contests are exciting, and even the spectators get in on the action.  
Without getting into specifics, let me just say that some people have 
come away from these competitions wealthier than beforehand.
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Carbon versus Silicon

In addition, to the regular GGP competition, there is now an annual battle 
between Carbon and Silicon.  Unfortunately for us, the humans are not 
doing that well.
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Human Race Being Defeated

For example, in 2012, CadiaPlayer handily defeated the human race 
(represented by Chris Welty shown here with some advisors). In keeping 
with the double-elimination format of the competition, the contestants 
played two different games. In the first, CadiaPlayer handily defeated the 
human in a well-played match of Dual Connect 4. It then won a match of 
Platform Jumpers.  As a consolation prize, the human was awarded two 
bottles of Scotch, in part to ease his disappointment at letting down the 
human race.



Game Description



Environment
    Environment with finitely many states
    One initial state and one or more terminal states
    Each state has a unique goal value for each player

Players
    Fixed, finite number of players
    Each with finitely many moves

Dynamics
    Finitely many steps 
    All players move on all steps (some no ops)
    Environment changes only in response to moves

Finite Synchronous Games

Despite the variety of games treated in General Game Playing, all games 
share a common abstract structure.  Each game takes place in an 
environment with finitely many states, with one distinguished initial state 
and one or more terminal states. In addition, each game has a fixed, finite 
number of players; each player has finitely many possible actions in any 
game state, and each state has an associated goal value for each player. 
The dynamic model for general games is synchronous update: all players 
move on all steps (although some moves could be "no-ops"), and the 
environment updates only in response to the moves taken by the players.
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a

a

b a

ab

b b

0 50 50 100

0 25 25 50

a ab ba a

s1 s2 s3 s4

s5 s6 s7 s8

Single Player Game

Given this common structure, we can think of a game as a state graph, 
like the one shown here. In this case, we have a game with one player, 
with eight states (named s1, ... , s8), with one initial state (s1), with two 
terminal states (s4 and s8). The numbers associated with each state 
indicate the values of those states. The arcs in this graph capture the 
transition function for the game.  For example, if the game is in state s1 
and the player does action a, the game will move to state s2.  If the player 
does action b, the game will move to state s5.
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a

a / a

a / a

a / a a / a

a / aa / a

b / a a / b

0 / 0 50 / 50 50 / 50 100 / 0

0 / 0 25 / 25 25 / 25 0 / 100

b / a a / bb / a a / bb / a a / b

s1 s2 s3 s4

s5 s6 s7 s8

Multiple Player Game

In the case of multiple players with simultaneous moves, the arcs become 
multi-arcs, with one arc for each combination of the players' actions.  
Here is an example of a simultaneous move game with two players.  If in 
state s1 both players perform action a, we follow the arc labelled a / a.  If 
the first player does b and the second player does a, we follow the b / a 
arc.  We also have different goals for the different players.  For example, 
in state s4, player 1 gets 100 points whereas player 2 get 0 points; and, in 
state s8, the situation is reversed.
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Good News: Since all of the games that we are 
considering are finite, it is possible in principle to 
communicate game information in the form of state 
graphs.

Direct Description

The state graph captures the essential information about a game.  Since 
all of the games that we are considering are finite, it is possible, in 
principle, to describe such games in the form of state graphs.
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Problem: Size of description. Even though everything is 
finite, these sets can be large.

Solution:
    Exploit regularities / structure in state graphs
    to produce compact encoding

Problem and Solution

Unfortunately, such explicit representations are not practical in all cases. 
Even though the numbers of states and actions are finite, these sets can 
be extremely large; and the corresponding graphs can be larger still. For 
example, in chess, there are thousands of possible moves and more than 
10^30 states.  Fortunately, we can solve this problem by exploiting 
regularities in the game to produce compact encodings.



Monolithic states  –» structured states

Monolithic actions –» structured actions

    a –» f(a,b)

25

p(a)
p(b)
q(a,b)

s4 –»

Structured States and Actions

In practice, we rarely think of states as monolithic entities.  More 
frequently, we characterize states in terms of propositions that are true in 
those states.  Similarly, actions often have structure.
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f(b) f(b)f(b) f(b)f(b) f(b)

Structured State Machine

This leads to the notion of a structured state machine like the one shown 
here.  The overall structure is the same as in the simple state machine 
shown earlier, but in this case, we have revealed the structure of the 
states.  Now, by itself this does not help us since the graph is the same 
size as before.  However, actions frequently affect only some of the 
propositions that are true in states and leave others unchanged.  By 
exploiting these limitations on the effects of actions, we can often encode 
state graphs compactly by writing logical rules in place of explicit graphs.



Game Description Language (or GDL) is a formal 
language for encoding the rules of games.

Game rules written as sentences in Symbolic Logic.

GDL is widely used in the research literature and is used 
in virtually all General Game Playing competitions.

GDL extensions are applicable in real-world applications 
such as Enterprise Management and Computational Law.

Game Description Language

GDL is a formal language for encoding games in this way.  As we shall 
see, it is based on Symbolic Logic.  It is widely used in the research 
literature and is used in virtually all General Game Playing competitions.  
Moreover, it forms the basis for some more expressive variants that have 
significant  value in real-world applications, such as Enterprise 
Management and Computational Law.



role(x)
role(o)

init(cell(1,1,b))
init(cell(1,2,b))
init(cell(1,3,b))
init(cell(2,1,b))
init(cell(2,2,b))
init(cell(2,3,b))
init(cell(3,1,b))
init(cell(3,2,b))
init(cell(3,3,b))
init(control(x))

legal(P,mark(X,Y)) :-
  true(cell(X,Y,b)) &
  true(control(P))

legal(x,noop) :-
  true(control(o))

legal(o,noop) :-
  true(control(x))

next(cell(M,N,P)) :-
    does(P,mark(M,N))

next(cell(M,N,Z)) :-
    does(P,mark(M,N)) &
    true(cell(M,N,Z)) & Z!=b

next(cell(M,N,b)) :-
    does(P,mark(J,K)) &
    true(cell(M,N,b)) &
    distinct(M,J)

next(cell(M,N,b)) :-
    does(P,mark(J,K)) &
    true(cell(M,N,b)) &
    distinct(N,K)

next(control(x)) :-
    true(control(o))

next(control(o)) :-
    true(control(x))

terminal :- line(P)
terminal :- ~open

goal(x,100) :- line(x) & ~line(o)
goal(x,50) :- ~line(x) & ~line(o)
goal(x,0) :- ~line(x) & line(o)
goal(o,100) :- ~line(x) & line(o)
goal(o,50) :- ~line(x) & ~line(o)
goal(o,0) :- line(x) & ~line(o)

row(M,P) :-
    true(cell(M,1,P)) &
    true(cell(M,2,P)) &
    true(cell(M,3,P))

column(N,P) :-
    true(cell(1,N,P)) &
    true(cell(2,N,P)) &
    true(cell(3,N,P))

diagonal(P) :-
    true(cell(1,1,P)) &
    true(cell(2,2,P)) &
    true(cell(3,3,P))

diagonal(P) :-
    true(cell(1,3,P)) &
    true(cell(2,2,P)) &
    true(cell(3,1,P))

line(P) :- row(M,P)
line(P) :- column(N,P)
line(P) :- diagonal(P)

open :- 
true(cell(M,N,b))

Tic-Tac-Toe

Example

Here we see an example of GDL, in this case the rules for the game of 
Tic-Tac-Toe.  We discuss the specifics of GDL in our next lesson.  For 
now, the details are unimportant.  The one thing to note here is that this 
one page of rules fully describes a game of thousands of states.  That’s a 
significant saving over the state graph.  The improvement in more 
complex games can be even more dramatic.  For example, it is possible 
to describe the rules of Chess in just four pages of rules like these.



Game Management
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Game Management is the process of administering a 
game in General Game Playing.

Match = instance of a game.

Components:
    Game Manager
    Game Playing Protocol

Game ManagementGame Management

Game Management is the process of administering a game in a general 
game playing setting.  More properly, it should be called match 
management, as the issue is how to manage individual matches of 
games, not the games themselves.  However, everyone seems to use the 
phrase “Game Management”, and so we are stuck with it. In this 
segment, we start with an overview of the General Game Playing 
environment illustrating the central role of the Game Manager. We then 
discuss the General Game Playing communication protocol.



Game ManagerGame Manager

Here is a diagram of a typical general game playing ecosystem.  At the 
center of the ecosystem is the game manager.  The game manager 
maintains a database of game descriptions, maintains some temporary 
state for matches while they are running, and maintains a database of 
match results.  The game manager communicates with game players 
using the Internet’s TCP/ip protocol.  It also provides a user interface for 
users who want to schedule matches, and it provides graphics for 
spectators watching matches in progress.

The process of running a match goes as follows. Upon receiving a 
request to run a match, the Game Manager's first sends a start message 
to each player to initiate the match. Once game play begins, it sends play 
messages to each player to obtain their moves and simulates the results. 
This part of the process repeats until the game is over. The Manager then 
sends stop messages to each player.
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Start
    Manager sends Start message to players
    Start(id, role, description, startclock, playclock)

Game Playing ProtocolGeneral Game Playing Protocol

The start message lists the name of the match, the role the player is to 
assume (e.g. white or black in chess), a formal description of the 
associated game (in GDL), and the start clock and play clock associated 
with the match. The start clock determines how much time remains before 
play begins. The play clock determines how much time each player has to 
make each move once play begins.  Upon receiving a start message, 
each player sets up its data structures and does whatever analysis it 
deems desirable in the time available. It then replies to the Game 
Manager that it is ready for play.  Having sent the start message, the 
game manager waits for replies from the players. Once it has received 
these replies OR once the start clock is exhausted, 
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Start
    Manager sends Start message to players
    Start(id, role, description, startclock, playclock)

Play
    Manager sends Play messages to players
    Play(id, actions)
    Receives plays in response

General Game Playing Protocol

On each step, the Game Manager sends a play message to each player. 
The message includes information about the actions of all players on the 
preceding step. (On the first step, the argument is nil.)  On receiving a 
play message, players spend their time trying to decide their moves. They 
must reply within the amount of time specified by the match's play clock.  
The Game Manager waits for replies from the players. If a player does 
not respond before the play clock is exhausted, the Game manager 
selects an arbitrary legal move. In any case, once all players reply or the 
play clock is exhausted, the Game manager takes the specified moves or 
the legal moves it has determined for the players and determines the next 
game state. It then evaluates the termination condition to see if the game 
is over. If the game is not over, the game manager sends the moves of 
the players to all players and the process repeats.
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Start
    Manager sends Start message to players
    start(id, role, description, startclock, playclock)

Play
    Manager sends Play messages to players
    play(id, actions)
    Receives plays in response

Stop
    Manager sends Stop message to players
    stop(id, actions) 

General Game Playing Protocol

Once a game is determined to be over, the Game Manager sends a stop 
message to each player with information about the last moves made by 
all players. The stop message allows players to clean up any data 
structures for the match. The information about previous plays is supplied 
so that players with learning components can profit from their experience.  
Having stopped all players, the Game manager then computes the 
rewards for each player, stores this information together with the play 
history in its database, and ceases operation.



Game Playing



Logical reasoning in searching game tree:
    Initial state
    Legal actions for each player in each state
    State resulting from execution of legal action
    Value of each state for each player
    Determination of whether state is terminal

Easy to convert from logic to other representations
   Simplicity of logical formulation
   Simple, widely published algorithms
   3-4 orders or magnitude speedup
   no asymptotic change

Game Playing

Having a formal description of a game is one thing; being able to use that 
description to play the game effectively is something else entirely.  The player 
must be able to compute the initial state of the game.  It must be able to 
compute which moves are legal in every state.  It must be able to determine 
the state resulting from a particular combination of moves  It must be able to 
compute the value of each state for each player.  And it must be able to 
determine whether any given state is terminal.

Since game descriptions are written in symbolic logic, it is obviously necessary 
for a game player to do some amount of automated reasoning.  There are two 
extremes  here. (1) One possibility is for the game player to process the game 
description interpretively throughout a game. (2) The second possibility is for 
the player to use the description to devise a specialized program and then use 
that program to play the game. This is effectively automatic programming. As 
this is just an introduction, we will discuss the first possibility and leave it to you 
to think about the second possibility and various hybrid approaches.



Initial State

To start with, a player can use the game description to determine the initial 
state.  In the case of Tic-Tac-Toe, we have a board with nine empty cells.



White’s moves:                      Black’s moves:
    mark(1,1)                  noop
    mark(1,2)
    mark(1,3)
    mark(2,1)
    mark(2,2)
    mark(2,3)
    mark(3,1)
    mark(3,2)
    mark(3,3)

Legal Moves

Given a state, like the one we just saw, a player can use the game 
description to compute the legal moves for each of the players.  In this 
case, the white player can mark any of the nine cells.  And the black player 
do nothing; in other words, it must execute the noop action.



                      mark(1,3)

                        noop

X

State Update

Given a state and the players' actions, a player can compute the next 
state using the update rules.  In the case shown here, if the white player 
plays the mark(1,3) action in the initial state, the result is a state in which 
there is an X in the upper right corner.



X O X

O X
O

X O X

O X
OX

X O X

O X
O X

X O X

O X
O
X

Game Tree Expansion

One way for a player to decide on a course of action in a match is to use 
these two computations repeatedly to expand the game tree.  Starting in 
a known state, it computes the legal actions for itself and its opponents, 
as previously discussed.  For each combination of actions of the players, 
it simulates the actions to obtain the next state and thereby expand the 
tree.  Here we see the TTT tree expanded one level.
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Game Tree Search

Repeating this, a player can expand the tree to two levels, three levels, and so 
forth, until it encounters terminal states on every branch, such as the one here in 
the middle of the bottom row.  By examining the various branches, it can choose 
the one that produces the best payoff.  Of course, this choice depends on the 
move of the other players, and it must consider all possible opponent moves or 
make some assumptions about things that the other players will or will not do.  In 
principle, this procedure allows a player to identify the best possible strategy to 
play the game.



Large state spaces
    ~5000 states in Tic-Tac-Toe
    >1030 states in Chess

Limited Resources
    Memory
    Time (start clock, move clock)

Resource Limitations

Unfortunately, even in cases where there is a clearcut solution, the tree 
may be so large as to make it practically impossible for any player to 
expand the game tree.  In TTT, there are just 5000 states, a manageable 
number; but there are more than 10^30 states in chess.  Using this 
approach, the player would run out of time and memory long before 
finishing.



Incremental Search
    Expand Game Graph incrementally
    As much as time allows
    Minimax/etc. evaluation on non-terminal states
    using an evaluation function of some sort

But how do we evaluate non-terminal states?

In traditional game playing, the rules are known in 
advance; and the programmer can invent game-
specific evaluation functions.  Not possible in GGP.

Incremental Search

The alternative is to do incremental search, on each move expanding the 
tree as much as possible and then making a choice based on the 
apparent value of non-terminal states.  In traditional game playing, where 
the rules are know in advance, the programmer can invent game-specific 
evaluation functions to help in this regard.  For example, in chess, we 
know that states with higher piece count and greater board control are 
better than ones with less material or lower control.   Unfortunately, it is 
not possible for a GGP programmer to invent such game-specific rules in 
advance, as the game's rules are not known until the game begins.  The 
program must evaluate states for itself.



Ideas   
*  Novelty with reversibility
*  Goal-monotonic observables
*  Bad states, useless moves
    <insert your good idea here>

Guaranteed Evaluation Functions

The good news is that there are some evaluation techniques that always 
work.  For example, there is no harm preferring new states to states that 
have previously been seen, provided that there is a way to get back to the 
original states.  Also, if a player is able to determine that some observable 
condition corresponds to distance from the goal, then it is good to 
minimize that quantity.  Suppose the player were in a cave trying to get 
out.  If it saw a brighter light in one tunnel than another, it might go for the 
brighter light.  Finally, there are some states that can be determined to be 
bad even if other states are not known to be good.  For example, 
stepping off the roof of a tall building is probably not the best way to get to 
the store (at least not in the real world).



Ideas
    Goal proximity (everyone)   
    Maximize mobility (Barney Pell)
    Minimize opponent’s mobility (Jim Clune)
    <insert your good idea here>

Non-Guaranteed Evaluation Functions

Another possibility is to use non-guaranteed heuristics.  A number of such heuristics have been 
proposed over the years.

Goal proximity is an example.  Proponents of this heuristic argue that, all other things being 
equal, it is a good idea to prefer states that are closer to goal states than states that are farther 
away.  Distance here is usually judged by similarity between states, that is the number of facts in 
common in the descriptions of the two states.

Mobility is another general heuristic.  Proponents argue that, all other things being equal, it is 
better to move to a state that affords the player greater mobility, that is more possible actions.  
Better than being boxed into a corner.  Symmetrically, proponents of mobility argue that it is good 
to minimize the mobility of one's opponents.

All of these heuristics have been shown to be effective in some games.  Unfortunately, they are 
only heuristics.  They frequently fail, sometimes with comical consequences.



GGP-06 Final - Cylinder Checkers

The final match of GGP-06 is an example.  The game was cylinder 
checkers, i.e. checkers played on a cylinder.  Recall that, in checkers, a 
player is permitted to move one of his ordinary pieces (pieces that are not 
kings) one square forward on each turn.  Here red is moving from top to 
bottom and black is moving from bottom to top.  If a piece is blocked by 
an opponent's player, he can "jump" that player if there is an empty 
square on the other side.  Moreover, the player *must* make such a jump 
if one is available.  The objective of the game is to take all or as many of 
the opponent's pieces as possible while preserving one's own pieces.    
Here is a snapshot of the game.  It is red's turn to play.  What should he 
do?  And what do you think he did?



GGP-06 Final - Cylinder Checkers

Here’s a hint.  The player in this case was Cluneplayer, and it had 
decided, for some reason or other, that limiting the opponent’s mobility 
was a good heuristic.  If it were to move the rearmost piece, black would 
have multiple moves.  However, if it were to move the piece in front, black 
would be forced to capture its piece.  In other words, it would have at 
most one move.  Clearly, moving the forward piece minimizes the 
opponent's mobility, so that is what Cluneplayer did.  Actually, the whole 
match played out this way, with red giving black captures at every 
opportunity.  It was sad to watch but also a little comical.  The moral is 
that, while non-guaranteed heuristics are sometimes useful, they are not 
always useful.
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25 50 0 75

100 0 0 0 0 100 100 0 0 0 0 0 100 0 100 100

Monte Carlo

An alternative to evaluation functions like these is Monte Carlo Search.  
The basic idea of is simple.  The player expands the tree a few levels.  
Then, rather than using a local heuristic to evaluate a state, it makes 
some probes from that state to the end of the game by selecting random 
moves for all players. It sums up the total rewards for all such probes and 
divides by the number of probes to obtain an estimated utility for that 
state. It can then use these expected utilities in comparing states and 
selecting actions.  Monte Carlo and its variants have proven highly 
successful in general game playing, and virtually every general game 
playing program today uses some variant of Monte Carlo search.



Metagaming is the process of reasoning about games and, by 
extension, game players and game playing.

Extremely broad definition:
    game design and game analysis
    games in general as well as specific games
    what programmers do in creating specific / general players

Done offline, i.e. during the start clock or between moves or 
in parallel with regular game play.

Metagaming

This discussion of game tree search and heuristics reveals just how 
difficult the GGP problem is.  Monte Carlo works amazingly well, but it too 
breaks down badly in certain cases.  Fortunately, there is another, 
complementary approach to general game playing that has tremendous 
power, and that is *metagaming*.

Metagaming is problem solving in the world of games.  It involves 
reasoning about games and, by extension, game players and game 
playing.  As stated, this is an extremely general definition.  It includes both 
game design and game analysis.  It includes reasoning about games in 
general as well as reasoning about specific games and specific matches of 
specific games.  Significantly, it includes what programmers do in devising 
programs to play specific games as well as what programmers do in 
devising general game playing programs.  Metagaming is usually done 
offline, during the brief period after a player receives the game rules and 
game play begins; or sometimes it is done in parallel with game tree 
search.
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Differences from Game tree search
    more information
    less information, i.e. more general
    goal - create / optimize player to play games effectively

Techniques:
    Analysis of propositional nets and rule graphs
    Proofs using logic
    Compilation into machine language and/or FPGAs

Metagaming Specifics

In General Game Playing, we are primarily interested in those types of metagaming that can be automated.  This raises the question of 
the distinction between ordinary game playing and metagaming.  Can we distinguish the two?  It is not that easy, but there is a 
difference.  To begin with, ordinary game tree search can be viewed as a degenerate form of metagaming, one in which the metagamer 
must find the best actions for a specific role in a specific game starting in a specific state.  By contrast, in some cases, metagaming 
sometimes involves information and goals that are different from the specifics of game tree search. 

* To begin with, metagaming can take into account information other than the game description.  For example, it might take into account 
its past experience.  For example, in a round robin tournament where total return matters, it might select a different strategy than in an 
elimination ladder, where beating the opponent's score is what matters most.

* Metagaming is also sometimes done with *less* information than is used in match play, e.g. without information about role, initial state, 
goals, or termination.  As a result, metagaming is more general, deriving conclusions that apply across different games and different 
players.

* The goal of metagaming is broader than that of game tree search.  It is not so much concerned with selecting the actions of a specific 
player in a specific game, but rather it is concerned with devising a game tree search program or optimizing an existing program to 
search the game tree (without actually searching the tree itself).

Whether or not the concept of automated metagaming can be distinguished from game tree search, there is no doubt that the concept is 
used to good effect in many general game playing programs.



Hodgepodge = Chess + Othello

	

             Branching factor: a	

 	

 Branching factor: b

Analysis of joint game:
    Branching factor as given to players: a*b
    Fringe of tree at depth n as given: (a*b)n

    Fringe of tree at depth n factored: an+bn

Hodgepodge

One example of metagaming is game decomposition, also called factoring.  
Consider the game of Hodgepodge.  Hodgepodge is actually two games 
glued together.  Here we show chess and othello, but it could be any two 
games.  One move in a joint game of Hodgepodge corresponds to one 
move in each of the two constituent games.  Winning requires winning at 
least one of the two games while not losing the other.  What makes 
Hodgepodge interesting is that it is factorable, that is it can be divided into 
two independent games.  Realizing this can have dramatic benefit.  To see 
this, consider the size of the game tree for hodgepodge.  Suppose that 
one game tree has branching a and the other has branching factor b.  
Then the branching factor of the joint game is a times b, and the size of 
the fringe of the game tree at level n is (a*b)^n.  However, the two games 
are independent. Moving in one subgame does not affect the state of the 
other subgame.  So, the player really should be searching two smaller 
game trees, one with branching factor a and the other with branching 
factor b.  In this way, at depth n, there would be only a^n+b^n states.  This 
is a huge decrease in the size of the search space.



Finding Interesting Structure in Games:
    Factoring, e.g Hodgepodge
    Bottlenecks, e.g. Triathalon
    Symmetry detection, e.g. Tic-Tac-Toe
    Dead State Removal

Trade-off - cost of finding structure vs savings
    Sometimes cost proportion to size of description
    Sometimes savings proportional to size of the game tree

Reformulation Opportunities

Factoring is just one example of game reformulation.  There are many 
others.  For example, it is sometimes possible to find symmetries in games 
that cut down on search space.  In some games, there are bottlenecks that 
allow for a different type of factoring.  Consider, for example, a game made 
up of one or more subgames in which it is necessary to win one game 
before moving on to a second game.  In such a case, there is no need to 
search to a terminal state in the overall game; it is sufficient to limit search 
to termination in the current subgame.  These examples are extreme 
cases, but there are many simpler everyday examples of finding structure 
of this sort that can help in curtailing search.

The trick in metagaming is to analyze and/or reformulate a game  without 
expanding the entire game tree.  The interesting thing about general game 
playing is this - that sometimes the cost of analysis is proportional to the 
size of the description rather than the size of the game tree, as in teh 
examples we have just seen.  In such cases, players can expend a little 
time and gain a lot in search savings.



Philosophical Remarks



Critique: Game playing is  frivolous.

Serious Applications:
    Enterprise Management
    Computational Law

Funders:
    Darpa
    SAP

General Game Playing is not a game

As we shall see, GGP is an interesting application in its own right.  It is 
intellectually engaging and more than a little fun.  But it is much more than that.  It 
serves an analog for applications of logic in other areas, such as business and law, 
science and engineering.  More fundamentally, it raises questions about the nature 
of intelligence and serves as a laboratory in which to evaluate competing 
approaches to artificial intelligence.



Characteristics of GGP
    game descriptions contain full information
    which determine optimal behavior

Useful for evaluating theories of intelligence
    effects of representation
    incompleteness of information
    resource bounds 

Testbed for Theories of Intelligence

More fundamentally, general game playing has value as a testbed for theories of 
intelligence.  Game descriptions provide full information about a world and 
determine optimal strategies as a baseline for evaluating agent behavior.  By its 
nature, the GGP setting can be used to evaluate problem solving strategies and by 
extension theories of intelligence, by taking into account representation, 
incompleteness of information, and resource bounds.



The main advantage we expect the advice taker to have 
is that its behavior will be improvable merely by 
making statements to it, telling it about its … 
environment and what is wanted from it.  To make these 
statements will require little, if any, knowledge of the 
program or the previous knowledge of the advice taker.

John McCarthy

It was in 1958 that John McCarthy invented the concept of the "advice taker".  The 
idea was simple.  He wanted a machine that he could program by description.  He 
would describe the intended environment and the desired goal, and the machine 
would use that information in determining its behavior.  There would be no 
programming in the traditional sense.  McCarthy presented his concept in a paper 
that has become a classic in the field of AI. ... READ



The potential use of computers by people to accomplish 
tasks can be “one-dimensionalized” into a spectrum 
representing the nature of the instruction that must be 
given the computer to do its job.  Call it the what-to-
how spectrum.  At one extreme of the spectrum, the 
user supplies his intelligence to instruct the machine 
with precision exactly how to do his job step-by-step. ...  
At the other end of the spectrum is the user with his real 
problem.  ...  He aspires to communicate what he wants 
done ... without having to lay out in detail all necessary 
subgoals for adequate performance. 

Ed Feigenbaum

An ambitious goal!  But that was a time of high hopes and grand ambitions. The 
idea caught the imaginations of numerous subsequent researchers -- notably Bob 
Kowalski, the high priest of logic programming, and Ed Feigenbaum, the inventor 
of knowledge engineering.  In a paper written in 1974, Feigenbaum gave his most 
forceful statement of McCarthy's ideal. ... READ



A human being should be able to change a diaper, plan 
an invasion, butcher a hog, conn a ship, design a 
building, write a sonnet, balance accounts, build a 
wall, set  a bone, comfort the dying, take orders, give 
orders, cooperate, act alone, solve equations, analyze a 
new problem, pitch manure, program a computer, cook 
a tasty meal, fight efficiently, die gallantly.  
Specialization is for insects.

computer/robot
v

Robert Heinlein

One final remark.  Some have argued that the way to achieve intelligent behavior 
is through specialization. That may work so long as the assumptions one makes in 
building such systems are true. For general intelligence, however, general 
intellectual capabilities are needed, and such systems should be capable of 
performing well in a wide variety of tasks. To paraphrase the words of Robert 
Heinlein ... READ ... Those of us who are more interested in artificial intelligence 
than artificial insects agree with Heinlein.
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