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Guest Lecture: Electron Spin
Part I: Zeeman effect
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Degeneracy of spherically symmetric eigenstates

n=2

E, =-13.6 eV/n?
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*Imagine we have a classical electron orbit with total angular momentum
IL| = JI(l+ Dh

*This circulating charged particle comprises a current and so the orbit has a
magnetic moment
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Ug: “Bohr magneton”

* Therefore, the electron has additional energy in magnetic field:

E=—i- B E=—u,B, (for §=Bzf)

* So, if different states with the same principle quantum number n have different <>,
their energy eigenvalues will shift differently in a magnetic field and the degeneracy will

be broken!



Orbital angular momentum in z-direction
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*What is <L,>?
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* So the energy added to each state due to the magnetic field is

(L ) 5
E=—(u)B, =, h = upmnp, (for B=8,2)

* Note that nz=5.8 x 10° eV/T (small in comparison to electronic transitions even for large magnetic fields)
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“Normal” Zeeman effect

* In a magnetic field, the otherwise degenerate [ # 0 levels
continuum split into “multiplets” separated by “Zeeman” energy

* What effect does this have on the observed optical spectra?

— —: N=2 g i.e. what did Zeeman see?
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g * Not all transitions are allowed!
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—n=1 * We must derive “selection rules”
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Electronic Dipole Transitions

1pnlm - 1p?’.&’l’m’

initial > final

* During transition, electron is in a superposition state
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* This charged electron “cloud” has a dipole moment
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Selection Rules
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* So the only transitions allowed have Am=0,+1, or -1. This is our “selection rule”

* Also, from the symmetry of the polar angle 6 integral, we have another selection rule A/=+1 or -1 (without proof)
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Zeeman selection rules

E,=-13.6 eV, n=1

A/=+1 or -1 and Am=0,+1, or -1.
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* Each spectral line splits into a triplet

* By the uncertainty principle AtAE~h, AE (spectral linewidth) is

inversely proportional to excited state lifetime At

* Note that 2s-1s is forbidden by dipole selection rules.
Since the 2s lifetime At is large, the spectral linewidth

AE is (very) smalll This enables precision
measurements at 1 part in 10* such as the “Lamb
shift”:  experimental verification of quantum

electrodynamical effects
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Willis Lamb
Nobel Prize, 1955
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* Polarizations can be derived from the E
electric dipole vector components 5 ‘
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“Anomalous” Zeeman effect

* More commonly we see multiplet splitting other than 3!
* What are we forgetting?
* Go back to assumptions:

h2

d
——V2Y = {h— free particle
vaw Lhat‘P ( p )

* This uses the nonrelativistic kinetic energy E=1/2mv?=p?/2m
* Note this equation does not treat time and space on an equal footing:
1st derivative for time and 2"d derivative for space

* More correctly we should use the relativistic expression for kinetic energy

E = \/(mcz)z + (pc)?

* Note that this is asymptotically equivalent to classical expression:

E =mcz\/1+(%)2zmcz(1+%(%)2+---)
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Relativistic Quantum Mechanics

* Interpret total energy expression as an operator to construct wave equation

0 :
\/(mCZ)Z + (pc)?¥ = ihaqj (free particle)

* But how to interpret the action of an operator from within a square root??

* This problem disappears if the expression inside is a perfect square... is it??
(mc*)? + (pc)* = (agmc® + apiC + ayp ¢ + asp;c)?

= (a:ofnr?,c2 + Z?zl cz:),-p),-c)2

Only if o4?>=1 and oyou+ayou={oy,04}=0 for izj: This defines a “Clifford algebra” Paul Dirac
Nobel Prize, 1932
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* Note that this puts space and time on equal footing as required by relativity (only first derivatives)



“Irreducible representation” of Clifford Algebra

* Must use matrices — but how big?

* smallest which satisfy algebra are 4x4:
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* Note that when p=0, eigenvalues are +mc? and -mc? (twofold degenerate)

* Degeneracies are a signature of symmetry... but which one? What degree of freedom do these two values
correspond to? Look to experiment for a clue...



