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Photon emission spectrum of Hydrogen
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Degeneracy of spherically symmetric eigenstates

Energy
continuum

b
o

u
n

d
 sta

te
s

n=2

•Imagine we have a classical electron orbit with total angular momentum 

•This circulating charged particle comprises a current and so the orbit has a 

magnetic moment
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• Therefore, the electron has additional energy in magnetic field:

• So, if different states with the same principle quantum number n have different <µz>, 

their energy eigenvalues will shift differently in a magnetic field and the degeneracy will 

be broken!

En=-13.6 eV/n2

µB: “Bohr magneton”

(for B=Bzẑ)



Orbital angular momentum in z-direction

•What is <LZ>?

• We know:

So:

• By analogy,

• So the energy added to each state due to the magnetic field is

• Note that µB=5.8 x 10-5 eV/T (small in comparison to electronic transitions even for large magnetic fields) 

(for B=Bzẑ)

(m: “magnetic quantum number” )



“Normal” Zeeman effect

Energy
continuum

b
o

u
n

d
 sta

te
s

n=2

n=3
0 …

• In a magnetic field, the otherwise degenerate                 levels 

split into “multiplets” separated by “Zeeman” energy   

• What effect does this have on the observed optical spectra? 

i.e. what did Zeeman see?
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Pieter Zeeman

Nobel Prize, 1902

• Not all transitions are allowed!

• We must derive “selection rules”

B≠0

0 



Electronic Dipole Transitions

• During transition, electron is in a superposition state

initial → final

• This charged electron “cloud” has a dipole moment

* *

**



Selection Rules

• Vector components of φ integral:

• So the only transitions allowed have ∆m=0,+1, or -1. This is our “selection rule”

• Also, from the symmetry of the polar angle θ integral, we have another selection rule ∆l =+1 or -1 (without proof)

UNLESS m-m’= ±1

UNLESS m-m’= 0



“Normal” Zeeman selection rules
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• Each spectral line splits into a triplet

• By the uncertainty principle ∆t∆E~h, ∆E (spectral linewidth) is 

inversely proportional to excited state lifetime ∆t

∆∆∆∆l l l l =+1 or -1 and ∆∆∆∆m=0,+1, or -1. 
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• Note that 2s-1s is forbidden by dipole selection rules.

Since the 2s lifetime ∆t is large, the spectral linewidth

∆E is (very) small! This enables precision

measurements at 1 part in 1015 such as the “Lamb

shift”: experimental verification of quantum

electrodynamical effects

inversely proportional to excited state lifetime ∆t

Willis Lamb

Nobel Prize, 1955
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Polarization of radiative transitions
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absent!

∆m=0 ∆m=+1∆m=-1
y (for B=Bzẑ)

• Polarizations can be derived from the 

electric dipole vector components

Hendrik Lorentz

Nobel Prize, 1902
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“Anomalous” Zeeman effect

• More commonly we see multiplet splitting other than 3!

• What are we forgetting?

• Go back to assumptions:

• This uses the nonrelativistic kinetic energy E=1/2mv2=p2/2m

(free particle)

• This uses the nonrelativistic kinetic energy E=1/2mv2=p2/2m

• Note this equation does not treat time and space on an equal footing:

1st derivative for time and 2nd derivative for space

• More correctly we should use the relativistic expression for kinetic energy

• Note that this is asymptotically equivalent to classical expression:

+ small relativistic corrections



Relativistic Quantum Mechanics

• Interpret total energy expression as an operator to construct wave equation

• But how to interpret the action of an operator from within a square root??

• This problem disappears if the expression inside is a perfect square… is it??

(free particle)

Only if αi
2=1 and αiαj+αjαi={αi,αj}=0 for i≠j: This defines a “Clifford algebra”

“Dirac Equation”

• Note that this puts space and time on equal footing as required by relativity (only first derivatives)

Paul Dirac

Nobel Prize, 1932



“Irreducible representation” of Clifford Algebra

• Must use matrices – but how big?

• smallest which satisfy algebra are 4x4:

•Pauli matrices

• Note that when p=0, eigenvalues are +mc2 and –mc2 (twofold degenerate)

• Degeneracies are a signature of symmetry… but which one? What degree of freedom do these two values

correspond to? Look to experiment for a clue…


