

Exploring Quantum Physics

Coursera, Spring 2013 Instructors: Charles W. Clark and Victor Galitski

Atomic Structure and Spectra Part V. A hidden symmetry

coursera

Exploring Quantum Physics

by Dr. Charles Clark and Dr. Victor Galitski

Home

Video Lectures

Additional Materials

Discussion Forums

Homeworks and Assignments

Course Logistics

Syllabus

About Us

Additional Materials

Mathematical References

For those who may want to brush up on their mathematics before or during the courses, we present a short crash course on the math

Original scientific literature

Some lectures draw on material from original scientific literature, which we provide here for the convenience of students.

- · Atomic clocks and quantum computers
- . The Bohr model of the atom
- · Bose-Einstein condensation
- · The discovery of deuterium
- . The discovery of deuterium a simplified account
- . The green laser pointer
- · The photoelectric effect
- . Does quantum mechanics provide a complete description of physical reality?
- · Young's double slit experiment and diffraction

Classical equations of motion for hydrogen-like systems: Hamiltonian form

$$\dot{\vec{p}} = -Ze^2\vec{r}/r^3$$

$$\dot{\vec{r}} = \frac{1}{\mu}\vec{p}$$

$$E = T + V(r) = \frac{p^2}{2\mu} - \frac{Ze^2}{r}$$

Note that \vec{r} and \vec{p} define a plane that is perpendicular to \vec{L}

$$\dot{\vec{r}} = -Ze^2\vec{r}/r^3$$

$$\dot{\vec{r}} = \frac{1}{\mu}\vec{p}$$

$$E = T + V(r) = \frac{p^2}{2\mu} - \frac{Ze^2}{r}$$

$$\vec{L} = \vec{r} \times \vec{p}$$

$$ec{r} imes ec{L}$$
 These lie in the same $ec{p} imes ec{L}$ plane as $ec{r}$ and $ec{p}$

$$\dot{\vec{p}} = -Ze^2\vec{r}/r^3$$

$$\dot{\vec{r}} = \frac{1}{\mu}\vec{p}$$

$$E = T + V(r) = \frac{p^2}{2\mu} - \frac{Ze^2}{r}$$

$$\vec{L} = \vec{r} \times \vec{p}$$

$$ec{r} imes ec{L}$$
 These lie in the same $ec{p} imes ec{L}$ plane as $ec{r}$ and $ec{p}$

$$ec{r} imes ec{L} = ec{r} imes (ec{r} imes ec{p}) = \mu ec{r} imes (ec{r} imes \dot{ec{r}})$$
BAC-CAB rule:

$$\vec{A}\times(\vec{B}\times\vec{C})=\vec{B}(\vec{A}\cdot\vec{C})-\vec{C}(\vec{A}B)$$

$$\dot{\vec{p}} = -Ze^2\vec{r}/r^3$$

$$\dot{\vec{r}} = \frac{1}{\mu}\vec{p}$$

$$E = T + V(r) = \frac{p^2}{2\mu} - \frac{Ze^2}{r}$$

$$\vec{L} = \vec{r} \times \vec{p}$$

$$ec{r} imes ec{L}$$
 These lie in the same $ec{p} imes ec{L}$ plane as $ec{r}$ and $ec{p}$

$$\vec{r} \times \vec{L} = \vec{r} \times (\vec{r} \times \vec{p}) = \mu \vec{r} \times (\vec{r} \times \dot{\vec{r}})$$

$$\vec{r} \times (\vec{r} \times \dot{\vec{r}}) = \vec{r}(\vec{r} \cdot \dot{\vec{r}}) - \dot{\vec{r}}(\vec{r} \cdot \dot{\vec{r}})$$

$$= \vec{r}r\dot{r} - \dot{\vec{r}}r^2 = -r^3\dot{\hat{r}}$$

$$\hat{r}=ec{r}/r$$
 the unit vector of $ec{r}$

$$\dot{\vec{p}} = -Ze^2\vec{r}/r^3$$

$$\dot{\vec{r}} = \frac{1}{\mu}\vec{p}$$

$$E = T + V(r) = \frac{p^2}{2\mu} - \frac{Ze^2}{r}$$

$$\vec{L} = \vec{r} \times \vec{p}$$

$$ec{r} imesec{L}$$
 These lie in the same $ec{p} imesec{L}$ plane as $ec{r}$ and $ec{p}$

$$\vec{r} \times \vec{L} = \vec{r} \times (\vec{r} \times \vec{p}) = \mu \vec{r} \times (\vec{r} \times \dot{\vec{r}})$$

$$\vec{r} \times (\vec{r} \times \dot{\vec{r}}) = \vec{r}(\vec{r} \cdot \dot{\vec{r}}) - \dot{\vec{r}}(\vec{r} \cdot \vec{r})$$

$$= \vec{r}r\dot{r} - \dot{\vec{r}}r^2 = -r^3\dot{\hat{r}}$$

$$\hat{r}=ec{r}/r$$
 the unit vector of $ec{r}$

$$\frac{d}{dt}(\vec{p} \times \vec{L}) = \dot{\vec{p}} \times \vec{L} = -\frac{Ze^2}{r^3} \vec{r} \times \vec{L}$$

Classical equations of motion for hydrogen-like systems: Hamiltonian form

$$\dot{\vec{p}} = -Ze^2\vec{r}/r^3$$

$$\dot{\vec{r}} = \frac{1}{\mu}\vec{p}$$

$$E = T + V(r) = \frac{p^2}{2\mu} - \frac{Ze^2}{r}$$

$$\vec{L} = \vec{r} \times \vec{p}$$

$$ec{r} imesec{L}$$
 These lie in the same $ec{p} imesec{L}$ plane as $ec{r}$ and $ec{p}$

$$\vec{r} \times \vec{L} = \vec{r} \times (\vec{r} \times \vec{p}) = \mu \vec{r} \times (\vec{r} \times \dot{\vec{r}})$$

$$\vec{r} \times (\vec{r} \times \dot{\vec{r}}) = \vec{r}(\vec{r} \cdot \dot{\vec{r}}) - \dot{\vec{r}}(\vec{r} \cdot \vec{r})$$

$$= \vec{r}r\dot{r} - \dot{\vec{r}}r^2 = -r^3\dot{\hat{r}}$$

$$\hat{r}=ec{r}/r$$
 the unit vector of $ec{r}$

$$\frac{d}{dt}(\vec{p} \times \vec{L}) = \dot{\vec{p}} \times \vec{L} = -\frac{Ze^2}{r^3} \vec{r} \times \vec{L}$$

The Runge – Lenz vector

$$\vec{A} = \vec{p} \times \vec{L} - Ze^2\mu\hat{r}$$

Classical equations of motion for hydrogen-like systems: Hamiltonian form

$$\dot{\vec{p}} = -Ze^2\vec{r}/r^3$$

$$\dot{\vec{r}} = \frac{1}{u}\vec{p}$$

$$E = T + V(r) = \frac{p^2}{2\mu} - \frac{Ze^2}{r}$$

$$\vec{L} = \vec{r} \times \vec{p}$$

$$\vec{A} = \vec{p} \times \vec{L} - Ze^2\mu\hat{r}$$

The Runge-Lenz vector defines an orbit:

$$rA\cos\phi = \dot{r}(\dot{\vec{p}} \times \vec{L}) - rZe^2\mu$$

Classical equations of motion for hydrogen-like systems: Hamiltonian form

$$\dot{\vec{p}} = -Ze^2\vec{r}/r^3$$

$$\dot{\vec{r}} = \frac{1}{\mu}\vec{p}$$

$$E = T + V(r) = \frac{p^2}{2\mu} - \frac{Ze^2}{r}$$

$$\vec{L} = \vec{r} \times \vec{p}$$

$$\vec{A} = \vec{p} \times \vec{L} - Ze^2\mu\hat{r}$$

The Runge-Lenz vector defines an orbit:

$$rA\cos\phi = \vec{r}(\vec{p} \times \vec{L}) - rZe^{2}\mu$$
$$= L^{2} - rZe^{2}\mu$$

Classical equations of motion for hydrogen-like systems: Hamiltonian form

$$\dot{\vec{p}} = -Ze^2\vec{r}/r^3$$

$$\dot{\vec{r}} = \frac{1}{\mu}\vec{p}$$

$$E = T + V(r) = \frac{p^2}{2\mu} - \frac{Ze^2}{r}$$

$$\vec{L} = \vec{r} \times \vec{p}$$

$$\vec{A} = \vec{p} \times \vec{L} - Ze^2\mu\hat{r}$$

The Runge-Lenz vector defines an orbit:

$$rA\cos\phi = \vec{r}(\vec{p} \times \vec{L}) - rZe^{2}\mu$$
$$= L^{2} - rZe^{2}\mu$$

$$r = \frac{L^2}{Ze^2\mu + A\cos\phi}$$

Classical equations of motion for hydrogen-like systems: Hamiltonian form

$$\dot{\vec{p}} = -Ze^2\vec{r}/r^3$$

$$\dot{\vec{r}} = \frac{1}{\mu}\vec{p}$$

$$E = T + V(r) = \frac{p^2}{2\mu} - \frac{Ze^2}{r}$$

$$\vec{L} = \vec{r} \times \vec{p}$$

$$\vec{A} = \vec{p} \times \vec{L} - Ze^2\mu\hat{r}$$

$$r = \frac{L^2}{Ze^2\mu + A\cos\phi}$$

One final calculation:

$$A^2 = \vec{A} \cdot \vec{A} = 2\mu E L^2 + Z^2 e^4 \mu^2$$

Classical equations of motion for hydrogen-like systems: Hamiltonian form

$$\dot{\vec{p}} = -Ze^2\vec{r}/r^3$$

$$\dot{\vec{r}} = \frac{1}{\mu}\vec{p}$$

$$E = T + V(r) = \frac{p^2}{2\mu} - \frac{Ze^2}{r}$$

$$\vec{L} = \vec{r} \times \vec{p}$$

$$\vec{A} = \vec{p} \times \vec{L} - Ze^2\mu\hat{r}$$

$$r = \frac{L^2}{Ze^2\mu + A\cos\phi}$$

One final calculation:

$$A^2 = \vec{A} \cdot \vec{A} = 2\mu E L^2 + Z^2 e^4 \mu^2$$

$$E = rac{p^2}{2\mu} - rac{Ze^2}{r}$$
 $\vec{L} = \vec{r} imes \vec{p}$
 $\vec{A} = \vec{p} imes \vec{L} - Ze^2\mu\hat{r}$
 $A^2 = 2\mu EL^2 + Z^2e^4\mu^2$
 $r = rac{L^2}{Ze^2\mu + A\cos\phi}$

Electron – nucleus system completely described by constants of motion up to choice of initial time.

All orbits are ellipses for E < 0 (like planets)
These correspond to the bound states of atoms and molecules that produce sharp emission or absorption lines

All orbit are hyperbolas for E > 0
These correspond to the states produced in the photoelectric effect and the ionization of gases by ultraviolet radiation, as discussed by Einstein, and in Rutherford's scattering experiment.