

Exploring Quantum Physics

Coursera, Spring 2013 Instructors: Charles W. Clark and Victor Galitski

Atomic Structure and Spectra Part IV. Still cracking the hydrogen code

Classical equations of motion for hydrogen-like systems

Nucleus: position, mass, electric charge \vec{r}_n ; M; +Ze

Electron: position, mass, electric charge \vec{r}_e ; m; -e

$$\vec{r} = \vec{r}_n - \vec{r}_e$$

$$r = \sqrt{\vec{r} \cdot \vec{r}}$$

$$M\ddot{\vec{r}}_n = -Ze^2\vec{r}/r^3$$
 $\mu\ddot{\vec{r}} = m\ddot{\vec{r}}_e = +Ze^2\vec{r}/r^3$ $\frac{1}{\mu} = \left[\frac{1}{M} + \frac{1}{M}\right]Ze^2\vec{r}/r^3$ $\vec{p} = \mu\dot{\vec{r}}$

$$\mu \ddot{\vec{r}} = -Ze^2 \vec{r}/r^3$$

$$\frac{1}{\mu} = \left[\frac{1}{M} + \frac{1}{m}\right]$$

$$\vec{p} = \mu \dot{\vec{r}}$$

First-order equations:

$$\dot{\vec{p}} = -Ze^2\vec{r}/r^3$$

$$\dot{\vec{r}} = \frac{1}{\mu}\vec{p}$$

Classical equations of motion for hydrogen-like systems: Hamiltonian form

$$\dot{\vec{p}} = -Ze^2\vec{r}/r^3$$

$$\dot{\vec{r}} = \frac{1}{u}\vec{p}$$

Find constants of motion from products of $\, \vec{p} \,$ and $\, \vec{r} \,$:

$$T = \frac{\vec{p} \cdot \vec{p}}{2\mu} = \frac{p^2}{2\mu}$$

Classical equations of motion for hydrogen-like systems: Hamiltonian form

$$\dot{\vec{p}} = -Ze^2\vec{r}/r^3$$

$$\dot{\vec{r}} = \frac{1}{\mu}\vec{p}$$

Find constants of motion from products of $\, \vec{p} \,$ and $\, \vec{r} \,$:

$$\vec{r}_e$$
 $\vec{r} = \vec{r}_n - \vec{r}_e$ $r = \sqrt{\vec{r} \cdot \vec{r}}$

$$T = \frac{\vec{p} \cdot \vec{p}}{2\mu} = \frac{p^2}{2\mu}$$

$$\dot{T} = \frac{\vec{p} \cdot \vec{p}}{\mu} = -Ze^2\dot{\vec{r}} \cdot \vec{r}/r^3 = -Ze^2\dot{r}/r^3 = -\frac{\partial}{\partial t}\left(\frac{-Ze^2}{r}\right) = -\dot{V}(r)$$

$$V(r) = -Ze^2/r$$

Classical equations of motion for hydrogen-like systems: Hamiltonian form

$$\dot{\vec{p}} = -Ze^2\vec{r}/r^3$$

$$\dot{\vec{r}} = \frac{1}{\mu}\vec{p}$$

Find constants of motion from products of $\ensuremath{\vec{p}}$ and $\ensuremath{\vec{r}}$:

$$T = \frac{\vec{p} \cdot \vec{p}}{2\mu} = \frac{p^2}{2\mu}$$

$$\dot{T} = \frac{\vec{r} \cdot \vec{r}}{2\mu} = \frac{\vec{r}}{2\mu}$$

$$\dot{T} = \frac{\vec{p} \cdot \dot{\vec{p}}}{\mu} = -Ze^2\dot{\vec{r}} \cdot \vec{r}/r^3 = -Ze^2\dot{r}/r^3 = -\frac{\partial}{\partial t} \left(\frac{-Ze^2}{r}\right) = -\dot{V}(r)$$

$$V(r) = -Ze^2/r$$

We have found a constant of motion:

$$E = T + V(r)$$

Classical equations of motion for hydrogen-like systems: Hamiltonian form

$$\dot{\vec{p}} = -Ze^2\vec{r}/r^3$$

$$\dot{\vec{r}} = \frac{1}{\mu}\vec{p}$$

 $\vec{r} = \vec{r}_n - \vec{r}_e$ \vec{r}_e $r = \sqrt{\vec{r} \cdot \vec{r}}$

Find constants of motion from products of \Vec{p} and \Vec{r} :

$$T = \frac{\vec{p} \cdot \vec{p}}{2\mu} = \frac{p^2}{2\mu}$$
 $V(r) = -Ze^2/r$ $E = T + V(r)$

What about a constant of motion involving $\vec{r} \cdot \vec{r}$ or $\vec{r} \cdot \vec{p}$?

Classical equations of motion for hydrogen-like systems: Hamiltonian form

$$\dot{\vec{p}} = -Ze^2\vec{r}/r^3$$

$$\dot{\vec{r}} = \frac{1}{\mu}\vec{p}$$

 $\vec{r} = \vec{r}_n - \vec{r}_e$ \vec{r}_e $r = \sqrt{\vec{r} \cdot \vec{r}}$

Find constants of motion from products of \Vec{p} and \Vec{r} :

$$T = rac{ec{p} \cdot ec{p}}{2u} = rac{p^2}{2u}$$
 $V(r) = -Ze^2/r$ $E = T + V(r)$

What about a constant of motion involving $\vec{r} \cdot \vec{r}$ or $\vec{r} \cdot \vec{p}$?

How about $\vec{L} = \vec{r} imes \vec{p}$?

$$\dot{\vec{L}} = \dot{\vec{r}} \times \vec{p} + \vec{r} \times \dot{\vec{p}}$$

Classical equations of motion for hydrogen-like systems: Hamiltonian form

$$\dot{\vec{p}} = -Ze^2\vec{r}/r^3$$

$$\dot{\vec{r}} = \frac{1}{\mu}\vec{p}$$

Find constants of motion from products of \vec{p} and \vec{r} :

$$T = \frac{\vec{p} \cdot \vec{p}}{2\mu} = \frac{p^2}{2\mu}$$
 $V(r) = -Ze^2/r$ $E = T + V(r)$

What about a constant of motion involving $\vec{r} \cdot \vec{r}$ or $\vec{r} \cdot \vec{p}$?

How about
$$ec{L} = ec{r} imes ec{p}$$
 ?

$$\dot{ec{L}} = \dot{ec{r}} imes ec{p} + ec{r} imes \dot{ec{p}}$$
 $ec{L} = ec{r} imes ec{p}$

We have found a constant of motion:

$$\vec{L} = \vec{r} \times \vec{p}$$

Classical equations of motion for hydrogen-like systems: Hamiltonian form

$$\dot{\vec{p}} = -Ze^2\vec{r}/r^3$$

$$\dot{\vec{r}} = \frac{1}{\mu}\vec{p}$$

$$E = T + V(r) = \frac{p^2}{2\mu} - \frac{Ze^2}{r}$$

Note that \vec{r} and \vec{p} define a plane that is perpendicular to \vec{L}

