

Exploring Quantum Physics

Coursera, Spring 2013 Instructors: Charles W. Clark and Victor Galitski

Quantum harmonic oscillator

Part IV: Harmonic oscillator wave-functions **(*)

Summary of what we know so far (a lot)

Hamiltonian

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2 \hat{x}^2}{2} = \hbar\omega \left(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}\right)$$

Energy spectrum

$$E_n = \hbar \omega \left(n + \frac{1}{2} \right)$$
, with $n = 0, 1, 2, ...$

• The relation between (normalized) eigenfunctions

$$\hat{a}^{\dagger} | n \rangle = \sqrt{n+1} | n+1 \rangle$$
 and $\hat{a} | n \rangle = \sqrt{n} | n-1 \rangle$

• What we don't know is the explicit form of an eigenfunction...

Deriving the ground-state wave-function

For the ground state, $\hat{a}^{\dagger}\hat{a}|0\rangle = 0$, or explicitly $\hat{a}\psi(x) \equiv \left(\sqrt{\frac{m\omega}{2\hbar}}\hat{x} + \frac{i\hat{p}}{\sqrt{2m\omega\hbar}}\right)\psi(x)$

Excited states

