

Exploring Quantum Physics

Coursera, Spring 2013 Instructors: Charles W. Clark and Victor Galitski

Bound states in quantum potential wells Part II: Finite potential well

Formulation of the problem

$$U(x) = \begin{cases} U_0, & \text{if } |x| > a/2\\ 0, & \text{if } |x| < a/2, \end{cases}$$

• For
$$|x| > a/2$$
: $-\frac{\hbar^2}{2m}\psi''(x) + U_0\psi(x) = E\psi(x)$
$$\mathcal{T} = \frac{2m}{4!}(v_* - E) \quad \mathcal{T}'' - \mathcal{T}' = 0$$
• For $|x| < a/2$: $-\frac{\hbar^2}{2m}\psi''(x) = E\psi(x)$
$$\mathcal{L}'' = \frac{2mE}{4!} \quad \mathcal{T}'' + \mathcal{L}'' + \mathcal{L}'' = 0$$

 \bullet We're interested in finding bound state(s) (with 0 $< E < U_0$) satisfying the following continuity constraints:

$$\psi(\pm a/2 + 0) = \psi(\pm a/2 - 0) \text{ and } \psi'(\pm a/2 + 0) = \psi'(\pm a/2 - 0)$$
 along with the conditions $\psi(x \to \pm \infty) \to 0$.

Formulation of the problem

$$U(x) = \begin{cases} U_0, & \text{if } |x| > a/2 \\ 0, & \text{if } |x| < a/2, \end{cases}$$

 U_0

a/2

• For
$$|x| > a/2$$
: $\psi''(x) - \gamma^2 \psi(x) = 0$, $\gamma^2 = \frac{2m}{\hbar^2} (U_0 - E)$

• For
$$|x| < a/2$$
: $\psi''(x) + k^2 \psi(x) = 0$, $k^2 = \frac{2m}{\hbar^2} E$

• We're interested in finding bound state(s) (with $0 < E < U_0$) satisfying the following continuity constraints:

$$\psi(\pm a/2 + 0) = \psi(\pm a/2 - 0) \text{ and } \psi'(\pm a/2 + 0) = \psi'(\pm a/2 - 0)$$
 along with the conditions $\psi(x \to \pm \infty) \to 0$.

Using the symmetry

-a/2

• In general, if the Hamiltonian commutes with an operator, \hat{A} , $\hat{A} = \mathcal{E} \mathcal{A}$ $[\hat{H}, \hat{A}] = \hat{H}\hat{A} - \hat{A}\hat{H} = 0,$

solutions to the S. Eqn. can be chosen to have definite
$$\underline{a}$$
 and \underline{E} , $\psi_{aE}(x)$.

- Our potential is inversion symmetric $\hat{U}(x) = U(-x) \equiv U(x)$. Eigenvalues of \hat{I} are $p = \pm 1$.
- General solution of $\left(\frac{d^2}{dx^2} + k^2\right)\psi(x) = 0$:

$$\psi(x) = C_1 e^{ikx} + C_2 e^{-ikx}$$

We can choose solutions with a definite parity, or in other words:

$$\psi(x) = C\cos(kx) \text{ and } \psi_{-}(x) = \tilde{C}\sin(kx)$$

Using the constraints at infinities

• General solution of $\left(\frac{d^2}{dx^2} - \gamma^2\right)\psi(x) = 0$:

$$\psi(x) = Ae^{-\gamma x} + Be^{-\gamma x}$$

• E.g., for x > a/2 we must request that the wave-function remains finite at $x \to +\infty$. Otherwise, the probabilty for particle to "leak" to infinity would explode exponentially (does not make sense).

• So, we drop the B-term and the solution is

$$\psi(x) = Ae^{-\gamma x}, \text{ for } x > a/2$$

Using the matching conditions at x=a/2

• So, we found

$$\psi_+(x) = \begin{cases} Ae^{\gamma x}, & \text{if } x < -a/2 \\ C\cos(kx), & \text{if } |x| < a/2 \\ Ae^{-\gamma x}, & \text{if } x > a/2 \end{cases}$$

• Lets match solutions at x = a/2

$$C \cos\left(\frac{k^{\alpha}}{2}\right) = \mathcal{A} e^{-\frac{\pi \alpha}{2}} \qquad (1)$$

$$-Ck \sin\left(\frac{k^{\alpha}}{2}\right) = -\mathcal{A} \mathcal{T} e^{-\frac{\pi \alpha}{2}} \qquad (2)$$

$$\frac{E_{9}(2)}{E_{9}(1)} \qquad k \quad \tan\left(\frac{k^{\alpha}}{2}\right) = \mathcal{T}$$

Making the self-consistency equation dimensionless

• The non-linear self-consistency equation is not solvable analytically:

$$\tan\left(\frac{\mathcal{B}a}{2}\right) = \frac{\gamma}{k} \equiv \sqrt{\frac{U_0}{E} - 1}, \text{ with } k = \sqrt{2mE/\hbar^2}$$

• The starting point of analysis is to introduce dimensionless parameters. In our case, x=ka/2 and $\xi^2=\frac{mU_0a^2}{2\hbar^2}$

$$\tan x = \sqrt{(3/x)^2 - 1}$$

• Two limiting cases: a deep, $\frac{mU_0a^2}{\hbar^2}\gg 1$ and shallow, $\frac{mU_0a^2}{\hbar^2}\ll 1$, well.

Solving the self-consistency equation

$$tan x = \sqrt{(\xi/x)^2 - 1}$$

Deep potential, $\xi = 20$

Relatively shallow potential, $\xi = 1$

See, Michael Fowler's lectures at UVa for a more details analysis http://galileo.phys.virginia.edu/~mf1i/home.html