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Bound states in quantum potential wells
Part Il: Finite potential well
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Formulation of the problem
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e We're interested in finding bound state(s) (with 0 < E < Ug) satisfying
the following continuity constraints:

V(F+a/2 4+ 0) = (+a/2 —0) and ¢'(+a/2 + 0) = ¢'(Fa/2 — 0)

along with the conditions ¢(z — +o0) — O.
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Using the symmetry

e In general, if the Hamiltonian commutes with an operator, A, A/# E‘}é

(A, A]=AA- A0 =0, ¥ =ay

solutions to the S. Egn. can be chosen to have definite a and E, ¢,z (z).

e Our potential is inversion symmetrlc@U(T) =U(—x) =U(xz). Eigenval-

ues of I are p = +1. T ——
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e General solution of (%2 + k2> U(x) = 0: / T
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e \We can choose solutions with a definite parity, or in other words:

/:,@:U) = CCOS(k':B)?]d v_(x) = Csin(kx)




Using the constraints at infinities

e General solution of (—2 — )z;‘;(a;) = 0:
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e £.g., for x > a/2 we must request that the wave-function rematrsFiite
at » — +o00. Otherwise, the probabilty for particle to “leak” to infinity
would explode exponentially (does not make sense).

e SO, we drop the B-term and the solution is

Y(x) = Ae” 7", for z > a/2
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Using the matching conditions at x=a/2

e So, we found 4 U(x)
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Making the self-consistency equation dimensionless

e [ he non-linear self-consistency equation is not solvable analytically:

-
tan @%) = % \/%— 1, with £ = \/277@/712

e [ he starting point of analysis is to introduce dimensionless parameters.

mUna2
In our case, z = ka/2 and ¢2 = %‘1—

tanz = \/@/J’)Q —

1
e Two limiting cases: a deep, mlo“ >>@ and shallowwell.
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Solving the self-consistency equation
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Deep potential, £ =20 Relatively shallow potential, ¢ =1
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See, Michael Fowler’s lectures at UVa for a more details analysis
http://galileo.phys.virginia.edu/~mfli/home.html



