

Exploring Quantum Physics

Coursera, Spring 2013 Instructors: Charles W. Clark and Victor Galitski

A physical interpretation of quantum theory Part IV: Superposition principle; Dirac notations; representations

Superposition principle in quantum mechanics

• If $\Psi_1(\vec{r},t)$ and $\Psi_2(\vec{r},t)$ are solutions to the Schrödinger equation,

$$i\hbar \frac{\partial \Psi(\vec{r},t)}{\partial t} = \left[-\frac{\hbar^2 \nabla^2}{2m} + V(\vec{r}) \right] \Psi(\vec{r},t),$$

 $\Psi(\vec{r},t) = c_1 \Psi_1(\vec{r},t) + c_2 \Psi_2(\vec{r},t)$ is also a solution.

- This motivates the notion of a Hilbert space a linear vector space, where quantum states live.
- The wave-function, $\Psi(\vec{r})$, is a specific representation of a quantum state (much like coordinates of a vector).
- Dirac suggested notations for the "vectors" of quantum states:

$$\langle \Psi |$$
 and $| \Psi \rangle$

Simple reminder from linear algebra

 \vec{e}_x and \vec{e}_y form a basis.

$$\vec{a} = a_x \vec{e}_x + a_y \vec{e}_y$$

$$\vec{a} = \begin{pmatrix} a_x \\ a_y \end{pmatrix} \qquad \vec{a}^{\dagger} = (a_x, a_y)$$

$$\vec{e}_x \vec{e}_x^{\dagger} + \vec{e}_y \vec{e}_y^{\dagger} = {1 \choose 0} (1, 0) + {0 \choose 1} (0, 1) = \text{Identity matrix}$$

A quantum state, $|\Psi\rangle$ can be expanded in a basis $\{|q\rangle\}$.

$$\sum_{q}\left|q\right\rangle \left\langle q\right|=1\text{ or }\int_{q}\left|q\right\rangle \left\langle q\right|=1\qquad \left|\Psi\right\rangle =\sum_{q}\left|q\right\rangle \left\langle q|\Psi\right\rangle \text{ or }=\int_{q}\left|q\right\rangle \left\langle q|\Psi\right\rangle$$

How to choose a basis/representation

Q: How do we choose a basis for a wave-function?

A: It's a question of convenience, but there are standard choices.

- Physical observables in quantum mechanics are associated with linear, Hermitian operators.
- ullet For a generic operator, \widehat{A} , the eigenvalue problem

$$\widehat{A} |a\rangle = a |a\rangle$$

defines eigenvectors that form a basis in the Hilbert space.

- $\Psi(a) = \langle a | \Psi \rangle$ is the wave-function in the a-representation.
- Standard choices: coordinate representation, $\Psi(x) = \langle x | \Psi \rangle$, and momentum representation, $\Psi(p) = \langle p | \Psi \rangle$.

Summary

- Quantum states "live" in a linear vector space Hilbert space.
- A state-vector $|\Psi\rangle$ (wave-function) correspond to and contains maximum information about a quantum state, but still provides only probabilisic description about experimental outcomes.
- Observables $(\vec{r}, \vec{p}, \vec{L}, E, \text{ etc})$ are represented by operators acting on the state-vectors.
- Eigenvectors of an operator, \hat{A} $(\hat{A}|a\rangle = a|a\rangle)$ define a basis and the a-representation of the wave-function, $\psi(a) = \langle a|\psi\rangle$. The coordinate representation, $\psi(\vec{r})$, is the most conventional one.
- $|\Psi(\vec{r},t)|^2 dV$ gives the probability density of finding the particle in the elementary volume dV at the moment of time t.
- The expectation value of a quantity A in a state $|\psi\rangle$ is given by $\langle\psi|\hat{A}|\psi\rangle$.