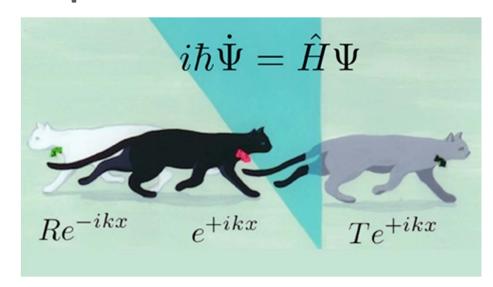


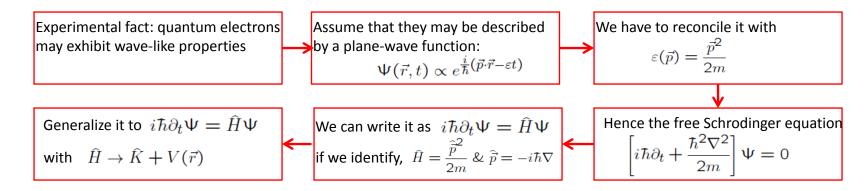
Exploring Quantum Physics

Coursera, Spring 2013 Instructors: Charles W. Clark and Victor Galitski

The meaning of the wave function Part III: Operators



A reminder on how the Schrödinger equation was "derived"



 Classical properties (energy, momentum, coordinate, etc), become operators acting on the wave-function

momentum
$$\rightarrow \hat{\vec{p}} = -i\hbar\nabla$$
 coordinate $\rightarrow \hat{r} \equiv \vec{r}$ (multiplication operator) kinetic energy $\rightarrow \hat{K} = -\frac{\hbar^2\nabla^2}{2m}$

Expectation values

- The Born rule tells us that $|\Psi(\vec{r})|^2$ is the probability distribution function of different positions of our quantum particle.
- Hence, the mean value of the position is

$$\langle \vec{r} \rangle = \int dV \Psi^*(\vec{r}) \vec{r} \Psi(\vec{r})$$

• Educated guess: assume that for a generic QM observable, X (with the corresponding operator, \hat{X}), the expectation value of X is

$$\langle X \rangle = \int dV \Psi^*(\vec{r}) \hat{X} \Psi(\vec{r})$$

 This conjecture indeed works out and becomes a basic principle of QM: physical observables are associated with (self-adjoint) operators acting on the wave-function with the expectation values as defined above.