# Feedback – Communication Exercises

You submitted this homework on **Wed 3 Apr 2013 2:13 PM CDT** -0500. You got a score of 0.00 out of 9.00. You can attempt again, if you'd like.

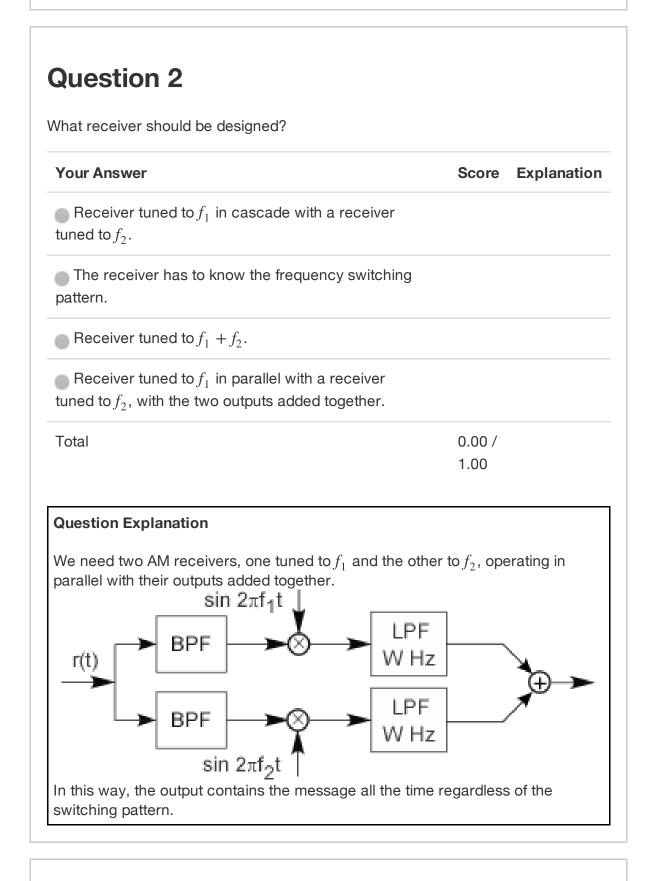
# **Question 1**

## Secret Communications

A system for hiding AM transmissions has the transmitter randomly switching between two carrier frequencies  $f_1$  and  $f_2$ . "Random switching" means that one carrier frequency is used for some period of time, then switches to the other for a while, back to the first, etc. The receiver knows the carrier frequencies but *not* when the frequency switches occur. Consequently, the receiver must be designed to receive transmissions regardless of which carrier frequency is used. Assume the message has a baseband bandwidth of W. The channel attenuates the transmitted signal (attenuation constant  $\alpha$ ) and adds white noise of spectral height  $\frac{N_0}{2}$ .

How frequency separation between the two carrier frequencies must be

employed?


Type an expression for the separation  $|f_2 - f_1|$  in terms of  $f_1$  (typed as f1),  $f_2$ 

(typed as f2),  $\alpha$  (typed as a),  $N_0$  (typed as N0) and W (typed as W).

| You entered: |             |                                    |  |  |  |  |
|--------------|-------------|------------------------------------|--|--|--|--|
| Preview Help |             |                                    |  |  |  |  |
| Your Answer  | Score       | Explanation                        |  |  |  |  |
| ×            | 0.00        | Could not parse student submission |  |  |  |  |
| Total        | 0.00 / 1.00 |                                    |  |  |  |  |

#### **Question Explanation**

If the carrier frequency separation  $|f_2 - f_1|$  is not greater than 2W, one carrier's message will "alias" into the other.

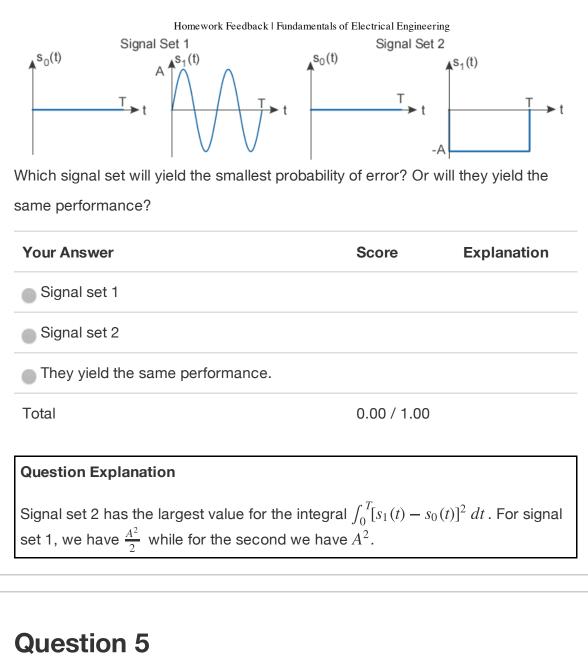


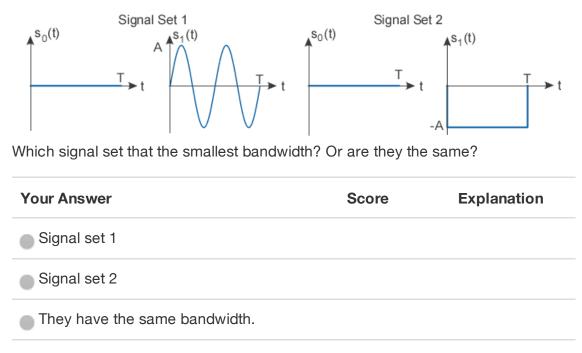
## **Question 3**

What is the signal-to-noise ratio for the demodulated signal?

Enter an expression for the signal-to-noise ratio in terms of  $f_1$  (typed as f1),  $f_2$  (typed as f2),  $\alpha$  (typed as a), the transmitter's amplitude A (typed as A),  $N_0$  (typed as N0) and W (typed as W). Type the message signal's power power[m] as Pm.

#### You entered:


| Preview Help      |   |             |                                    |  |  |  |
|-------------------|---|-------------|------------------------------------|--|--|--|
| Your Answer Score |   | Score       | Explanation                        |  |  |  |
|                   | × | 0.00        | Could not parse student submission |  |  |  |
| Total             |   | 0.00 / 1.00 |                                    |  |  |  |


## **Question Explanation**

Only noise emerges from the mistuned receiver; the properly tuned receiver yields the message plus noise with identical characteristics to the standard receiver. Here, the signal power is  $\alpha^2 A^2 \operatorname{power}[m]/4$  and the noise power is  $N_0 W/2$ . The mistuned receiver's output noise power is the same as the tuned one:  $N_0 W/2$ . After adding the two outputs, the signal remains the same and the two noise signals add. The noise powers add, making the signal-to-noise ratio a factor of two smaller than the usual receiver's.

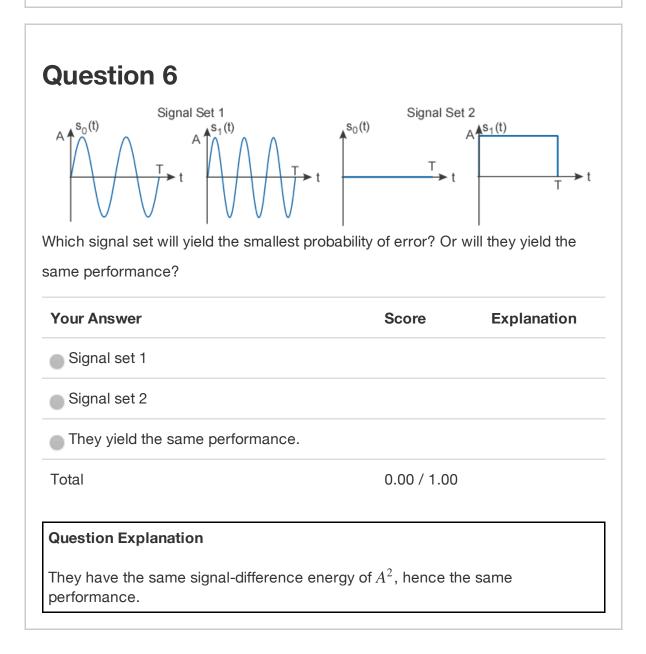
 $\frac{\alpha^2 A^2 \operatorname{power}[m]/4}{2 \cdot N_0 W/2} = \frac{\alpha^2 A^2 \operatorname{power}[m]}{4N_0 W}$ 

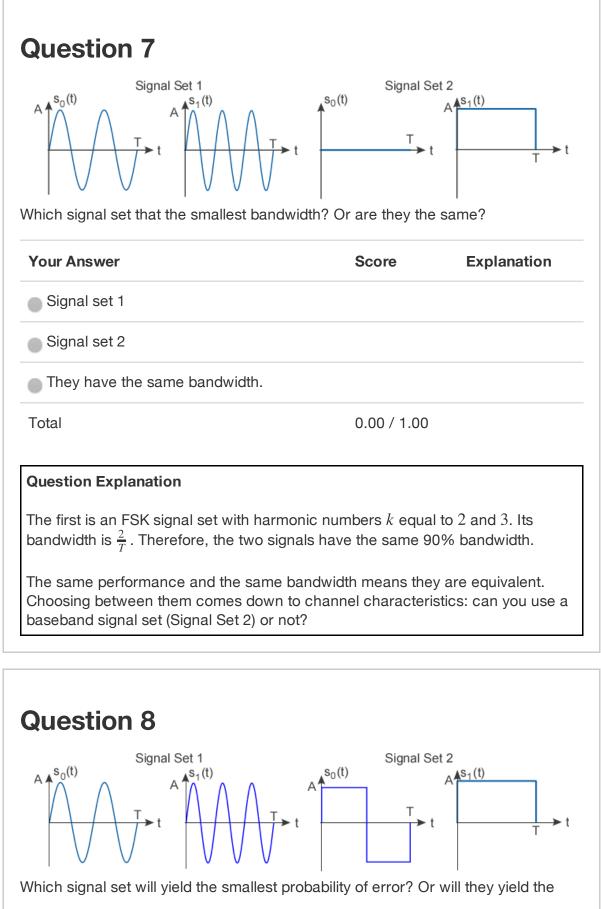
## **Question 4**





4/3/13


Total


0.00 / 1.00

#### Question Explanation

The 90% bandwidth of the first is  $\frac{4}{T}$ . Its alternating bit signal is a square wave with an offset added, all of which is multiplied by a sinusoid of frequency  $\frac{2}{T}$ . The second's alternating bit signal is just the square wave with an offset added, making its 90% bandwidth  $\frac{2}{T}$ .

Since signal set 2 yields the smallest  $P_e$  and has the smallest bandwidth, it is the clear choice.





same performance?

#### Your Answer

Score

**Explanation** 

| Signal set 1                                                      |             |  |  |  |
|-------------------------------------------------------------------|-------------|--|--|--|
| Signal set 2                                                      |             |  |  |  |
| They yield the same performance.                                  |             |  |  |  |
| Total                                                             | 0.00 / 1.00 |  |  |  |
| Question Explanation                                              |             |  |  |  |
| Signal set 2 has the largest signal difference energy ( $2A^2$ ). |             |  |  |  |

| Your AnswerScoreExplanationSignal set 1Signal set 2Signal set 2Image: Signal set 2They have the same bandwidth. $0.00 / 1.00$ Total $0.00 / 1.00$ Question ExplanationThe first is an FSK signal set with harmonic numbers $k$ equal to 2 and 3. Its bandwidth is $\frac{2}{T}$ .For signal set 2, the highest frequency signal is repeating zeros, not an alternating sequence. That makes its 90% bandwidth equal to its third harmonic: $\frac{3}{T}$ .Signal set 1 has the smallest bandwidth. | Question 9<br>Signal Set 1<br>A $\int_{1}^{s_0(t)} \int_{1}^{t} t$ A $\int_{1}^{s_1(t)} \int_{1}^{t} t$<br>Which signal set that the smallest bance | Signal S<br>t A So(t)<br>t T<br>width? Or are they the | t $T \rightarrow t$ |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------|--|--|--|--|
| Signal set 2   They have the same bandwidth.   Total $0.00 / 1.00$ Question Explanation   The first is an FSK signal set with harmonic numbers k equal to 2 and 3. Its bandwidth is $\frac{2}{T}$ .   For signal set 2, the highest frequency signal is repeating zeros, not an alternating sequence. That makes its 90% bandwidth equal to its third harmonic: $\frac{3}{T}$ .                                                                                                                    | Your Answer                                                                                                                                         | Score                                                  | Explanation         |  |  |  |  |
| They have the same bandwidth.<br>Total $0.00 / 1.00$<br>Question Explanation<br>The first is an FSK signal set with harmonic numbers $k$ equal to 2 and 3. Its<br>bandwidth is $\frac{2}{T}$ .<br>For signal set 2, the highest frequency signal is repeating zeros, <i>not</i> an<br>alternating sequence. That makes its 90% bandwidth equal to its third harmonic:<br>$\frac{3}{T}$ .                                                                                                           | Signal set 1                                                                                                                                        |                                                        |                     |  |  |  |  |
| Total $0.00 / 1.00$ Question ExplanationThe first is an FSK signal set with harmonic numbers k equal to 2 and 3. Its<br>bandwidth is $\frac{2}{T}$ .For signal set 2, the highest frequency signal is repeating zeros, not an<br>alternating sequence. That makes its 90% bandwidth equal to its third harmonic:<br>$\frac{3}{T}$ .                                                                                                                                                                | Signal set 2                                                                                                                                        |                                                        |                     |  |  |  |  |
| Question ExplanationThe first is an FSK signal set with harmonic numbers k equal to 2 and 3. Its<br>bandwidth is $\frac{2}{T}$ .For signal set 2, the highest frequency signal is repeating zeros, not an<br>alternating sequence. That makes its 90% bandwidth equal to its third harmonic:<br>$\frac{3}{T}$ .                                                                                                                                                                                    | They have the same bandwidth.                                                                                                                       |                                                        |                     |  |  |  |  |
| The first is an FSK signal set with harmonic numbers $k$ equal to 2 and 3. Its bandwidth is $\frac{2}{T}$ .<br>For signal set 2, the highest frequency signal is repeating zeros, <i>not</i> an alternating sequence. That makes its 90% bandwidth equal to its third harmonic: $\frac{3}{T}$ .                                                                                                                                                                                                    | Total                                                                                                                                               | 0.00 / 1.00                                            |                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                     |                                                        |                     |  |  |  |  |

Homework Feedback | Fundamentals of Electrical Engineering

performance but requires a wider bandwidth channel. Again, the channel's characteristics come into play: what kind of filtering does it apply to transmitted signals?