Feedback – DSP Exercises

You submitted this homework on **Wed 3 Apr 2013 2:09 PM CDT** -0500. You got a score of 0.50 out of 7.00. You can attempt again, if you'd like.

Question 1

On a 16-bit computer, where *signed* integers are represented with a single 16-bit word, what is the range of numbers that can be represented?

Your Answer	Score	Explanation
$[0, 2^{16} - 1]$		
$[-2^{16}, 2^{16} - 1]$		
$[-2^{15}, 2^{15} - 1]$		
Total	0.00 / 1.00	
Question Explanation		
Numbers will range from -2^{15} to $2^{15} - 1$, lying in the interval $[-32768, 32767]$, a total of 2^{16} numbers.		

Question 2

What decimal number does the binary number 101010 equal? Type your answer as an integer without a decimal point.

You entered:

Homework Feedback | Fundamentals of Electrical Engineering

Your Answer		Score	Explanation
	×	0.00	
Total		0.00 / 1.00	
Question Explanation $101010_2 = 1 \cdot 2^5 + 0 \cdot 2^4$	⁴ + 1 ·	$2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 +$	$0 \cdot 2^0 = 32 + 8 + 2 = 42_{10}$

Question 3

What is the sum of the two binary numbers 101 and 111 expressed as a binary number?

Your Answer	Score	Explanation
• 010		
100		
1100		
Total	0.00 / 1.00	
Question Explanation 101 + 111 = 1100. Just like in decimal addition, you need to carry a one when the two bits being added both equal 1. For example, $1 + 1 = 10$ and $11 + 01 = 100$.		

Question 4

Suppose the *periodic* signal s(t), with its period equalling T, has Fourier series coefficients c_k . What are the Fourier series coefficients of $s\left(t-\frac{T}{2}\right)$ in terms of c_k ? Use ck to represent c_k . For example, if your answer is $\frac{1}{2}c_k$, type ck/2.

You entered:				
Preview Help				
Your Answer	Score	Explanation		
×	0.00	Could not parse student submission		
Total	0.00 / 1.00			
Question Explanation	on			
From the Fourier series properties, $s(t - \tau) \leftrightarrow e^{-j\frac{2\pi k\tau}{T}} c_k$. As $\tau = \frac{T}{2}$,				
$e^{-j\frac{2\pi kT/2}{T}} = e^{-j\pi k} = (-1)^k$. So the <i>best</i> answer simplifies the complex exponential: $(-1)^k c_k$.				

Question 5

An A/D converter has a curious problem: every other sampling pulse is half its normal amplitude.

No No

Total

0.00 / 1.00

Question Explanation

Using the answer to the previous problem, we can think of p(t) as the superposition of two periodic pulse signals having period 2T with one delayed by T and scaled by a factor of two. The Fourier series coefficients for this signal are given by

$$c_k = A e^{-j\frac{\pi k\Delta}{2T}} \frac{\sin \frac{\pi k\Delta}{2T}}{\pi k} \left[1 + \frac{1}{2} \left(-1 \right)^k \right], \ k = \dots, -1, 0, 1, \dots$$

What matters more are the frequencies corresponding to the harmonics of the period: $f_k = \frac{k}{2T}$, $k = \dots, -1, 0, 1, \dots$ Unless Δ is a rational fraction of T, **none** of these coefficients are zero, which means the spacing between the spectral lines is 1/2T. This signal can be used to sample a signal having a highest frequency equal to *half* this spacing. Consequently, this signal *cannot* be used to sample a signal of bandwidth $\frac{1}{2T}$ without aliasing occurring.

Note: If the pulses all had the same amplitude, the term $\left[1 + \frac{1}{2}(-1)^k\right]$ in the formula for the Fourier coefficients would be $\left[1 + (-1)^k\right]$. This quantity equals zero for k odd and two for k even. In this case, it can (of course!) be used to sample the signal.

Question 6

A discrete-time sinusoid is given by $\sin 2\pi f_0 n$. What is this signal's period?

Question Explanation

The period would be $1/f_0$ if it were not for the fact that for the sinusoid to be periodic, the period *must* be an integer. In general, the discrete-time sinusoid is periodic *only* if $f_0 = \frac{1}{N}$.

Question 7

Which of the following expressions correspond to the depicted pulse signal? Check *all* that are correct.

Your Answer		Score	Explanation	
$\boxed{\frac{1}{3} \left(\delta(n) + \delta(n-2) \right)}$	~	0.25		
$\boxed{\frac{1}{3}} \left(\mathrm{u}(n) - \mathrm{u}(n-2) \right)$	•	0.25		
$\boxed{\frac{1}{3}\left(\mathrm{u}(n)-\mathrm{u}(n-3)\right)}$	×	0.00		
$\boxed{\frac{1}{3} \left(\delta(n) + \delta(n-1) + \delta(n-2) \right)}$	×	0.00		
Total		0.50 / 1.00		
Question Explanation				
This signal can be written as $\frac{1}{3}(u(n) - u(n-3))$ and as $\frac{1}{3}(\delta(n) + \delta(n-1) + \delta(n-2))$.				