Feedback – DSP Exercises: Spectra

You submitted this homework on **Wed 3 Apr 2013 2:10 PM CDT** -0500. You got a score of 0.33 out of 7.00. You can attempt again, if you'd like.

nat is the DTFT (dis	crete-time Four	rier transform) of the signal
$n-1) + \delta(n-7)?$		
/pe your answer as	an expression i	involving complex exponentials.
ou entered:		
Preview Help		
Preview Help Your Answer	Score	Explanation
		Explanation Could not parse student submission
Your Answer		

Question 2

What is the **length-8** DFT of the signal $\delta(n-1) + \delta(n-7)$?

Type your answer as an expression involving complex exponentials and k.

You entered:

Preview Help		
Your Answer	Score	Explanation
×	0.00	Could not parse student submission
Total	0.00 / 1.00	
	$e^{-j2\pi 7k/8}$ + $e^{-j2\pi 7k/8}$.	This can be simplified by noting that by this quantity, we obtain the equivalent $\cos\left(\frac{2\pi k}{8}\right)$.

Question 3

A colleague wants to check the answer provided for the length-8 DFT of the signal $\delta(n-1) + \delta(n-7)$. She computes the inverse DFT of the answer and obtains $\delta(n-1) + \delta(n+1)$. She checks her calculations and finds nothing wrong. Did she find the inverse DFT correctly?

Your Answer	Score	Explanation
• $\delta(n-1) + \delta(n-7)$ and $\delta(n-1) + \delta(n+1)$ are different signals. She made a mistake.		
• $\delta(n-1) + \delta(n-7)$ and $\delta(n-1) + \delta(n+1)$ are the same signals once they are made periodic. She is correct.		
She must have used the wrong formula for the DFT.		
Total	0.00 / 1.00	

Question Explanation

Because the DFT is a sampled version of the DTFT, the signal must be finite duration **and** will be periodic, the period being the length of the DFT. So, making $\delta(n-1) + \delta(n+1)$ periodic with period 8 (repeating it every 8 samples) and making $\delta(n-1) + \delta(n-7)$ periodic with period 8 results in the *same* signal. This example shows you that it is important to understand the periodicity imposed on the signal in the time domain by the DFT.

Question 4

You have been asked to grade answers for the DTFT of a variety of signals for a *large* number of students. *Without knowing what the signal was in each case*, which

of the following answers cannot be correct?

Check all that cannot possibly be right.

Your Answer		Score	Explanation
$\Box \frac{1}{a+j\pi f}$	×	0.00	Not periodic
$\cos(2\pi fT)$	×	0.00	f must be dimensionless. Assuming T has units of time, this cannot be an answer.
$e^{-j2\pi 2f}$	~	0.17	This is the DTFT of $\delta(n-2)$.
$\Box \frac{\sin 2\pi f}{\pi f}$	×	0.00	Not periodic.
$\frac{\sin 2\pi f}{\sin \pi f}$	×	0.00	Periodic, but not a period of 1.
$e^{-j\pi f} \frac{\sin 2\pi f}{\sin \pi f}$	V	0.17	Periodic with a period of 1. This is the DTFT of $\delta(n) + \delta(n-1)$.
Total		0.33 / 1.00	

Question 5

In computing the spectrogram, we need to "window" the signal. A typical window is the Hanning window, which corresponds to one cycle of a sinusoid over the window's duration. Taking N to be the duration and the signal is defined for $n = 0, \ldots, N - 1$, what is the formula for the Hanning window?

Your Answer	Score	Explanation		
$\boxed{\frac{1}{2}\left(1+\cos\frac{2\pi n}{N}\right)}$				
$\sin \frac{2\pi n}{N}$				
$\boxed{\frac{1}{2}\left(1-\cos\frac{2\pi n}{N}\right)}$				
$\boxed{\frac{1}{2}\left(1+\sin\frac{2\pi n}{N}\right)}$				
Total	0.00 / 1.00			
Question Explanation				
Window functions must be positive. The formula is $\operatorname{hanning}(n) = \frac{1}{2} \left(1 - \cos \frac{2\pi n}{N} \right).$				

Question 6

My boss wants me to calculate the spectrum of a length 1024 signal. When I finally receive the data, I discover it is 8 times longer than he says (the length is actually 8192).

If I use the DFT, how much longer will it take to calculate spectrum than to

calculate the spectrum of the length 1024 signal?

Your Answer	Score	Explanation
About 8 milliseconds longer.		
64 times the original time.		

Homework Feedback | Fundamentals of Electrical Engineering

The additional time depends on the compute.	speed of my
8 times the original time.	
Total	0.00 /
	1.00
	1.00
on Evaluation	

Question Explanation

Since the DFT has complexity $O(N^2)$, it will take 64 times longer to compute the spectrum.

Question 7

My boss wants me to calculate the spectrum of a length 1024 signal. When I finally receive the data, I discover it is 8 times longer than he says (the length is actually 8192).

If I use the FFT, how much longer will the calculation take?

Your Answer	Score	Explanation
A little more than 8 times longer.		
It will take the same amount of time since the FFT is so efficient.		
Depends on how fast my computer is.		
A factor of 64 times longer.		
Total	0.00 /	
	1.00	
Question Explanation		
Since the FFT has complexity $O(N \log_2 N)$, the com	putational tim	e will increase
by a factor of $\frac{8N\log_2 8N}{N\log_2 N} = 8\left(1 + \frac{\log_2 8}{\log_2 N}\right) = 8\left(1 + \frac{\log_2 8}{\log_2 N}\right)$	$\left(1 + \frac{3}{10}\right) =$	10.4 .