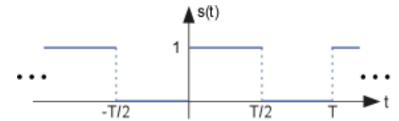

Feedback — Fourier Series Exercises

You submitted this homework on **Wed 3 Apr 2013 2:07 PM CDT** -0500. You got a score of **3.00** out of **28.00**. You can attempt again, if you'd like.

course	periodic. What is	s its period? Enter a numeric
	Score	Explanation
×	0.00	
	0.00 / 1.00	
_	×	× 0.00


Question 2

What are the Fourier series coefficients c_0 , c_1 , c_2 for $\cos(2\pi t)$ without explicitly calculating integrals. Use Euler's formula, Fourier series properties and any appropriate mathematical "tricks." Express your answer numerically, typing the real and imaginary parts for each answer separated by spaces. So, an answer of $c_0 = 0$, $c_1 = 1 + j$, $c_2 = -j$, $c_3 = 0$ would be typed as $0 \ 0 \ 1 \ 1 \ 0 \ -1 \ 0 \ 0$.

Question 3

What are the Fourier series coefficients c_0 , c_1 , c_2 for the depicted waveform?

You could evaluate the coefficients by evaluating the integral, but there is a simpler way. See if you can figure out the simple approach.

Express your answer numerically, typing the real and imaginary parts for each

answer separated by spaces. So, an answer of $c_0 = 0$, $c_1 = 1 + j$, $c_2 = -j$,

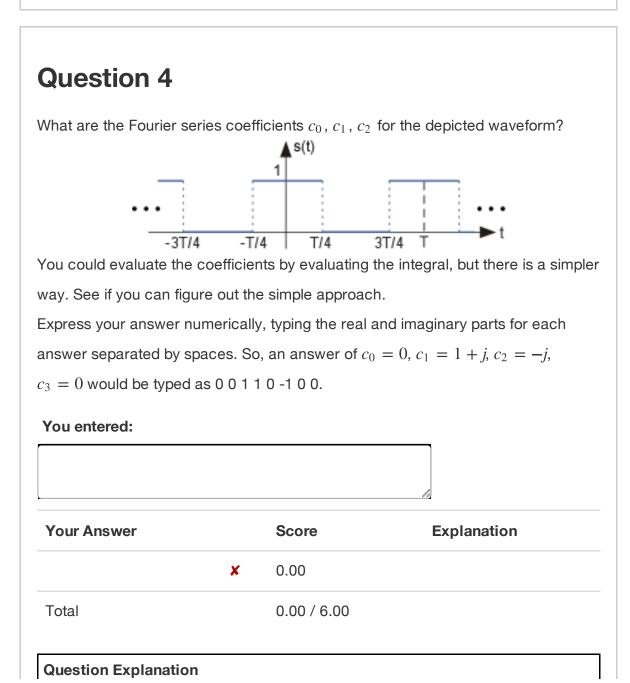
 $c_3 = 0$ would be typed as 0 0 1 1 0 -1 0 0.

You entered:

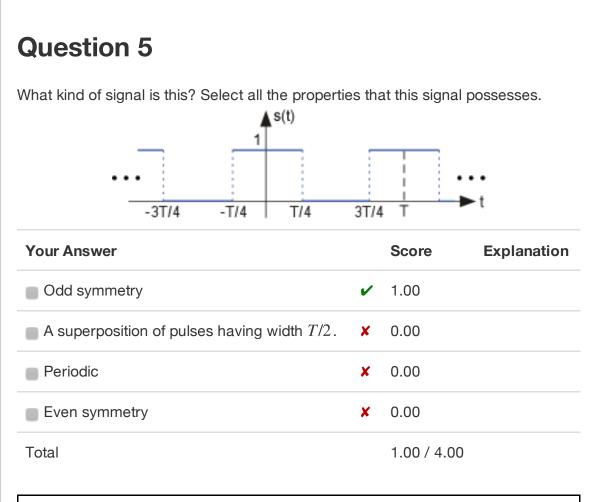
			1
Your Answer		Score	Explanation
	×	0.00	

Homework Feedback | Fundamentals of Electrical Engineering

Total


0.00 / 6.00

Question Explanation


This is a square wave with a constant, what electrical engineers call a DC offset, added. Just like we did early in the course, we are decomposing a signal as a sum simpler signals.

$$s(t) = \frac{1}{2} + \frac{1}{2} \operatorname{sq}_T(t)$$

The offset equals 1/2, making $c_0 = 1/2$. So, $c_1 = \frac{1}{j\pi} = -0.318j$ and $c_2 = 0$ (square wave only has odd harmonics). The Fourier series of the square wave adds to that of the constant; in other words, superposition applies.

This signal is the *same* square-wave-like signal in the previous problem, but advanced in time by T/4. Consequently, the Fourier series coefficients of the previous problem can be multiplied by $e^{+j2\pi k\tau/T}$, $\tau = T/4$, which equals $e^{jk\pi/2}$. For k=1, $e^{jk\pi/2} = j$, which means that the coefficient $c_1 = \frac{1}{\pi} = 0.318$. The others are unchanged.

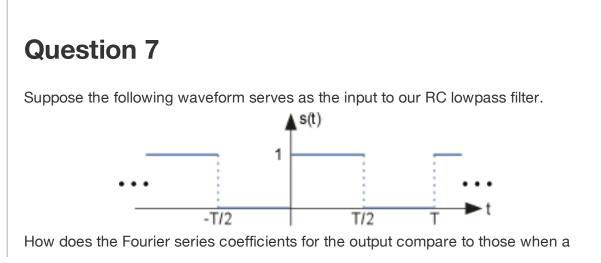
Question Explanation

This is an even, periodic signal, which makes its Fourier series coefficients realvalued. We have viewed it as a square wave, the most convenient decomposition for Fourier series calculation (in other words, as a sum of periodic signals). It can be viewed as a superposition of pulses, but this does not help with Fourier series calculations.

Question 6

A square wave of period T and amplitude 1 serves as the input to an RC lowpass

Homework Feedback | Fundamentals of Electrical Engineering


filter. What are the Fourier series coefficients for the filter's output? Since the square wave consists only of odd harmonics, enter your answer for the output's Fourier series coefficients d_k , k odd, as an expression involving T, R and C.

 $d_k =?, k \text{ odd.}$

You	entered:
-----	----------

Preview Help							
Your Answer		Score	Explanation				
	×	0.00	Could not parse student submission				
Total		0.00 / 1.00					
Question Explan							
The filter's transf	er fui	nction is $\frac{1}{1+i}$	$\frac{1}{i2\pi fRC}$. The harmonics of the square wave				
occur at the freq	uenc	$\operatorname{ies} f = k/T$. C	Consequently, the output Fourier series				
coefficients equa	l the	square wave	coefficients $\frac{2}{j\pi k}$ times the transfer function				
evaluated at the	asso	ciated harmor	nic frequency.				
		~) 1				

$$d_k = \frac{2}{j\pi k} \cdot \frac{1}{1 + j2\pi RCk/T}$$

Your Answer		Score	Explanation
d_0 is now non-zero and equals 1/2.	×	0.00	
The values for the coefficients for $k \ge 1$ are unchanged.	~	1.00	
The two are the same.	~	1.00	
The values for the coefficients for $k \ge 1$ are half the value of those resulting from the square-wave input.	×	0.00	
Total		2.00 /	
		4.00	
Question Explanation			
As $s(t) = \frac{1}{2} + \frac{1}{2} \operatorname{sq}_{T}(t)$, use superposition. The const	tant p	asses th	rough without
changing amplitude since the filter's gain at $f = 0$ is a square wave are scaled by $1/2$ since the square-wav scaled by half.	one. 1	The coeff	icients for the