Feedback — Circuit Exercises

You submitted this homework on **Wed 3 Apr 2013 2:05 PM CDT** -0500. You got a score of 0.00 out of 8.00. You can attempt again, if you'd like.

Thus, the current flowing out of the $\pi\Omega$ resistor equals 3 and the voltage across it

Homework Feedback | Fundamentals of Electrical Engineering

is "taken up" by the current source's voltage. The same kind of situation occurs for a resistor placed in parallel with a voltage source.

Using current divider, the current through the 2 Ω resistor is $3 \cdot \frac{1}{1+4} = \frac{3}{5}$. Consequently, the open-circuit voltage at the terminals is $\frac{6}{5} = 1.2$ volts.

To find the equivalent resistance, set the current source to zero (which makes it an open circuit). From the viewpoint of the terminals, the circuit appears to be $2||(2+1) = \frac{2 \cdot 3}{2+3} = \frac{6}{5} = 1.2\Omega.$

Question 2

Find the values of the Mayer-Norton equivalent current source and the Mayer-Norton equivalent resistance for the same circuit. Express your answer as a pair of numeric values, with the equivalent source coming first. For example, if $\mathit{I}_{eq}\,=5$ and $R_{\rm eq} = \sqrt{2}$, your answer should be entered as 5 1.4.

You entered:

Your Answer		Score	Explanation
	×	0.00	
Total		0.00 / 2.00	
Question Explanation			

The Mayer-Norton and Thévenin equivalent resistances equal each other. To find the equivalent current source, we place a short-circuit across the terminals. In this situation, the current source "sees" a 1Ω resistor in parallel with a 2Ω resistor. Consequently using current divider, the current flowing through the short circuit is $3 \cdot \frac{1}{1+2} = 1$ ampere.

Question 3

Consider the following circuit.

Find the values of the Thévenin equivalent voltage source and the Thévenin equivalent resistance for this circuit. Express your answer as a pair of numeric values, with the Thévenin equivalent voltage coming first. For example, if $V_{\rm eq} = 5$ and $R_{\rm eq} = \sqrt{2}$, your answer should be entered as 5 1.4.

Question 4

Find the values of the Mayer-Norton equivalent current source and the Mayer-

Norton equivalent resistance for the same circuit. Express your answer as a pair of numeric values, with the equivalent source coming first. For example, if $I_{\rm eq} = 5$ and $R_{\rm eq} = \sqrt{2}$, your answer should be entered as 5 1.4.

You entered:				
Your Answer	Score	Explanation		
×	0.00			
Total	0.00 / 2.00			
Question Explanation Since $I_{eq} = \frac{V_{eq}}{R_{eq}}$, the equivalent current source equals zero. The Mayer-Norton equivalent resistance always equals the Thévenin equivalent resistance, which we have found to be 1Ω .				