Let
Summary: Describes the Noisy Channel Coding Theorem.
As the block length becomes larger, more error correction will be needed. Do codes exist that can correct all errors? Perhaps the crowning achievement of Claude Shannon's creation of information theory answers this question. His result comes in two complementary forms: the Noisy Channel Coding Theorem and its converse.
Let
If
This result astounded communication engineers when Shannon published it in 1948. Analog communication always yields a noisy version of the transmitted signal; in digital communication, error correction can be powerful enough to correct all errors as the block length increases. The key for this capability to exist is that the code's efficiency be less than the channel's capacity. For a binary symmetric channel, the capacity is given by
capacity of a channel |
---|
![]() |
"Electrical Engineering Digital Processing Systems in Braille."