Fundamentals of
Electrical Engineering

Error Correcting Codes

® (lorrecting errors




Digital Communication Model
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How to Correct Errors?_
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How to Correct Errors?




Error Correction

1. For each received “codeword”. form
)

Hc = He
2. If non-zero, find error sequence

e He
1000000 | 101 ] _
0100000 | 111 1 1 0 : 1 0 O
0010000 | 110 H= |0 1 1 : 0 1 0
0001000 | 011 - :
0000100 | 100 1 1 0 1+ 0 0 1
0000010 | 010
0000001 | 001

3. Add error sequence to recerved “codeword”
che=(che)Pe=c

4. Find data bits 1n corrected codeword




Do we win?

® Remember, to send data at the same rate, we must

scale the bit interval duration by the coding
efhiciency factor £ = K/N
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Hamming Codes
For a (N, K) code, number of single-bit errors = N

Number of non-zero values for He = 2V % _ 1

To correct any single-bit error, must have
oN=K _ 1> N, N — K = number of coding bits
Maximally efficient when equality applies

oN-K _1 =N
N K B
3 1] 0.33
7 4 | 0.57
15 11 | 0.73
31 20 | 0.84
63 57 | 0.90
127 | 120 | 0.94




But...

® |'he ethcient Hamming code can correct all single-
bit errors

® When do double-bit errors become more likely
than single-bit errors?

(T)pe(l_pe)N_l < (J;[)p?(l —pe)
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double-bit errors more likely when T > N 1




Error-Correcting Godes

® lven though the channel introduces transmission
errors, error correcting codes can repair the errors

® However, 1t would seem that errors are always
present 1n digital communication




