Fundamentals of Electrical Engineering Error Correcting Codes

- Repetition codes
- Hamming codes

Digital Communication Model

- Can we mitigate channel-induced errors?
- Error correcting codes (ECC)

- Creates what is known as a (N, 1) code
- Has a *code rate* of 1/N

Decoding

Decode by "majority vote" When the source bit is "0"...

Receiver Codeword	Decoded Bit	Probability
000	0 🗸	$(1 - p_e)^3$
001	0 🖌	$p_e(1-p_e)^2$
010	0	$p_e(1-p_e)^2$
011	1 🗙	$p_e^2(1-p_e)$
100	0	$p_e(1-p_e)^2$
101	1 🗙	$p_e^2(1-p_e)$
110	1 🗶	$p_e^2(1-p_e)$
111	1 🗙	p_e^3

 $\Pr[\text{decoding error}] = 3p_e^2(1 - p_e) + p_e^3$ If $p_e < \frac{1}{2}, 3p_e^2(1 - p_e) + p_e^3 < p_e$

Repetition Codes

- Good point: very simple
- Bad points
 - * Low coding rate (1/N) for a single-bit error correcting code
 - * As N increases, single-bit errors become less likely
- Need more powerful codes

Block Codes

(N,K) codes: represent a block of K source bits with N bits

Example: (7,4) code

c(1) = b(1) c(2) = b(2) c(3) = b(3) c(4) = b(4) $c(5) = b(1) \oplus b(2) \oplus b(3)$ $c(6) = b(2) \oplus b(3) \oplus b(4)$ $c(7) = b(1) \oplus b(2) \oplus b(4)$ exclusive-or (XOR) binary arithmetic $0 \oplus 0 = 0$ $0 \oplus 1 = 1$ $1 \oplus 0 = 1$ $1 \oplus 1 = 0$

Hamming Distance

$$d(c_1, c_2) = \operatorname{sum}(c_1 \oplus c_2)$$

Example: $c_1 = [0101010]$ $c_1 \oplus c_2 = [00110000]$
 $c_2 = [0110010]$ $d(c_1, c_2) = 2$

Note: $c_2 = c_1 \oplus [00110000]$

Hamming Distance

How far apart do two codewords need to be so that in spite of a single-bit error, we know what the actual codeword was?

or

When can a single-bit error in one codeword *not* be confused with a single-bit error in another?

To have a single-bit error correcting code, must have $\min_{i \neq j} d(c_i, c_j) \ge 3$

RepetitionCode $0 \leftrightarrow 000$ c_1 $1 \leftrightarrow 111$ c_2 $d(c_1, c_2) = 3$ \checkmark

Re-express creating codewords from data bits with matrices using binary arithmetic

$$\mathbf{c} = \mathbf{G}\mathbf{b} \qquad \mathbf{b} = \begin{bmatrix} b(1) \end{bmatrix} \qquad \mathbf{G} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad \mathbf{c} = \begin{bmatrix} c(1) \\ c(2) \\ c(3) \end{bmatrix}$$

(7,4) Code

c(1) = b(1) c(2) = b(2) c(3) = b(3) c(4) = b(4) $c(5) = b(1) \oplus b(2) \oplus b(3)$ $c(6) = b(2) \oplus b(3) \oplus b(4)$ $c(7) = b(1) \oplus b(2) \oplus b(4)$

$$\mathbf{b} = \begin{bmatrix} b(1) \\ b(2) \\ b(3) \\ b(4) \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} c(1) \\ c(2) \\ c(3) \\ c(4) \\ c(5) \\ c(6) \\ c(7) \end{bmatrix}$$
$$\mathbf{c} = \mathbf{G}\mathbf{b}$$
$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

Properties of Block Codes

Because $\mathbf{c} = \mathbf{G}\mathbf{b}$, code is *linear*

 $\mathbf{c} = \mathbf{G}(\mathbf{b}_1 \oplus \mathbf{b}_2) = \mathbf{c}_1 \oplus \mathbf{c}_2$

Consequently, "adding" two codewords yields a codeword

Distance between any two codewords equals the number of bits in another codeword

$$d(\mathbf{c}_1,\mathbf{c}_2) = \mathbf{c}_1 \oplus \mathbf{c}_2 = \operatorname{sum}(\mathbf{c}_3)$$

Need only examine individual codewords to determine the code's error correcting capability

Back to (7,4) Code $\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$ $3 \ 4 \ 3 \ 3$

So we have a single-bit error correcting code! And the code rate (efficiency) = 4/7

Error-Correcting Codes

- Even though the channel introduces transmission errors, error correcting codes can repair some of the errors
- Very different than analog communication
- Must send bits at a higher rate than required by the source, but efficient codes are easily designed
- However, ECCs have limited capabilities

