Galaxy Evolution: Some Results and **Galaxy Evolution in Clusters**

Galaxy Colors vs. Redshift

Morphological mix comparable to that at $z \sim 0$ extends out to $z \sim 1$, with little apparent evolution

(V-I)

Evolution of Galaxy Sizes

HST imaging suggests that galaxies were smaller in the past

Evolution of Galaxy Masses

The more massive galaxies evolve less, i.e., they are already in place at $z \sim 1 - 2$, whereas most of the evolution at lower z's is for the low mass systems - seemingly opposite from what one may expect in the hierarchical scenario! (this is caled "galaxy downsizing")

Evolution of the Merger Rate

Good evidence for a rapid rise in merging fraction at higher z's, but conversion to mass assembly rate is not straightforward

Scaling Relations as Evolution Probes

By design, they are our sharpest probe of galaxy properties - and thus potentially of galaxy evolution (note that the relations themselves may be evolving!)

van Dokkum & Stanford, 2003

Evolution of the FP of Field Ellipticals

Gebhardt et al. 2004

Fundamental Plane Evolution

The data indicate a brightening of E's at higher redshift, as reflected in their surface brightness at a fixed r_e and σ . The brightening rate is consistent with passive evolution starting at a high redshift

Scaling Relations as Evolution Probes

- Studies of the FP in both clusters and field out to z > 1 indicate that ellipticals were brighter in the past, but the data are consistent with a model where they are formed at high redshifts (z > 3, say) and evolve nearly passively since then
- Data on galaxy colors and line strengths are also consistent with that picture
- There is a gradual rotation of the FP, in the sense that the lower mass E's are younger galaxy downsizing again
- Studies of the *Tully-Fisher relation* at high z's are much less conclusive: the TFR appears to be noisier in the past, and spirals somewhat brighter, but the situation is not clear yet

Galaxy Evolution in Clusters

Generally, we may expect a systematic difference in galaxy evolution processes in very different large-scale environments, mainly due to different dynamical effects.

The first of these was the **Butcher-Oemler effect:** the fraction of blue galaxies in clusters increases dramatically at higher redshifts

Galaxy Harassment

- Some encounters will not lead to mergers, but will disturb the tidally interacting galaxies
- First proposed by Moore et al. in 1996 as frequent high speed galaxy encounters (too fast for merging to occur) driving the morphological transformation of galaxies in clusters
- Galaxies will interact with both other galaxies in the cluster and with the cluster potential
- Galaxy harassment will transform Sc/Sd/dIrr galaxies into dE or dSph galaxies over the timescale of several billion years
- Tidal heating of disks may form S0's
- Tidally stripped debris is probably the source of intracluster stars
- In addition, gas may be stripped, leaving little fuel for star formation

Color-magnitude diagram for CL0939+4713, z ~ 0.41

Oemler et al. 1997

Post-Starburst Galaxies

- These blue galaxies in distant clusters are a mix of regular star-forming spirals, some AGN, and a new type:
- There is a significant population of *post-starburst galaxies* in distant clusters (~20%), these have K+A (or E+A) spectrum, showing both the features of a K-star (typical E galaxy spectrum) plus the strong Balmer absorption lines of an A star
- This would only be seen in a galaxy that was forming stars in the recent past (<1.5 Gyr) but the star formation was truncated
- This is probably related to the conversion of S0 to S galaxies (morphology density) and the Butcher-Oemler effect

S0/E galaxy fraction as a function of redshift

The data indicate that there is a systematic conversion of regular spirals into S0 and E galaxies in time, but at any fixed redshift, richer and denser clusters have fewer spirals

Evolution of Spirals in Cluster Environment

- Possible scenario for spirals transforming into S0's:
 - Infalling spiral galaxies @ z~0.5
 - Triggering star formation
 - Starburst (emission-line galaxies)
 - Gas is stripped by intracluster medium
 - Post-starburst galaxies
 - Tidal interactions heat disk
 - Stars fade
 - The products are S0's at z~0
 - Morphological segregation proceeds hierarchically, affecting richer, denser clusters earlier. S0's are only formed after cluster virialization
- But there are S0's also in group environments, so this is not the only way to make them

