Stellar Population Synthesis

Colors of Stellar Populations: Differences in Star Formation Histories

Stellar Population Synthesis Models

- We can synthesize predicted galaxy spectra as a function of time by assuming the following:
 - Star formation rate (as a function of time)
 - Initial mass function
 - Libraries of stellar spectra for stars of different masses and metallicities and ages, etc.
 - Stellar evolutionary tracks (isochrones)
- A simple stellar population (SSP) is the result of an instantaneous burst of star formation
- We can model more complex star formation histories by adding together multiple SSPs, parameterize star formation rate as a function of time as:
 - $dM/dt \sim exp(-t/\tau)$ where t is the time since the start of star formation and τ is the star-formation time scale

Modeling Evolution of Stellar Pop's

- Stellar evolution is relatively well understood both observationally and theoretically; the key points to remember:
 - Massive stars are very hot, blue, very luminous, and have very short lives; they dominate the restframe UV light
 - Thus we expect largest effects in the bluer parts of the spectrum
 - But there are still some modest disagreements among the models
- Star formation histories are a key assumption:
 - Ellipticals are best fit by a burst of early star formation followed by "passive evolution" where they fade and get redder with time $\tau \sim 1$ Gyr or less
 - Spirals are best fit by $\tau \sim$ 3-10 Gyr they stay bluer and don't fade as much
 - Irregulars are best fit by constant star formation rates

Stellar Evolution Tracks

Well understood at low stellar masses and near-Solar metallicities, but uncertainties grow at high masses and very low metallicities

What We Need

- Stellar theory predicts the evolution or (*stellar tracks*) or stars of a given mass. There is some variation among different theoretical models
- Observations give us *libraries of stellar spectra* as a function of age, mass, metallicity, etc.
- We need the *initial mass function (IMF)* of stars
- All of these are uncertain at very low metallicities and high stellar masses
- We have to assume some *star formation rate (SFR)* as a function of time. Popular choices include a sharp burst, a constant SFR, or an exponentially declining one:

$$\frac{\partial M}{\partial t} \propto \exp\left(-\frac{t}{\tau}\right)$$

Colors and Star Formation Histories

• Ellipticals and bulges: old stellar systems following an initial burst of star formation; modest 'monolithic' collapse

• Spiral disks: significant dissipation during collapse, continuous star formation and younger mean stellar age

Different Models Agree Reasonably Well

... and produce the right range of galaxy colors, luminosities, and (M/L) ratios today

Predicted Spectral Evolution

for a simple stellar population (SSP): a δ -function burst with a fixed metallicity and IMF

Predicted Spectral Evolution

Generally, models fade in time, and faster in the UV than in the IR

Semi-Analytical Models

Semi-analytical models claim to match observations using prescriptive methods for star formation and morphological assembly

Warning: Star formation is a complex, poorlyconstrained phenomenon: provides a weak test of the theory (age of stars \neq age of structures)

