Massive Black Holes in Galactic Nuclei

and Dwarf Galaxies

Massive Black Holes in Galactic Nuclei

- It turns out that they are *ubiquitous*: nearly every non-dwarf galaxy seems to have one, but only a small fraction are active today; these super-massive black holes (SMBH) are believed to be the central engines of quasars or other AGN
- They are detected through central velocity dispersion or rotation cusps near the center requiring more mass than can be reasonably provided by stars
- *Their masses correlate very well with many of their host galaxy properties*, suggesting a co-formation and/or co-evolution of galaxies (or at least their old stellar spheroid components) and the SMBHs they contain
- Understanding of this connection is still not complete, but dissipative mergers can both drive starbursts and fuel/grow SMBHs

Many (all?) ellipticals (& bulges) have black holes- even compact ones like M32!

Can measure BH masses for galaxies via their velocity dispersion

M32 Velocity Dispersion

Fundamental Correlations Between SMBH Masses and Their Host Galaxy Properties

Local SMBH Demographics and Comoving Mass Density

 $\rightarrow \rho_{\bullet} \sim 4.9 \times 10^5 \,\mathrm{M_{\odot} \, Mpc^{-3}}$

Merritt & Ferrarese 2001

Recall that the normalization of the GLF is $\phi_* \sim 10^{-2}$ Mpc⁻³, so an average galaxy should contain a $\sim 10^7$ M_{\odot} black hole!

An even more fundamental relation?

Dark halo mass vs. SMBH mass (Ferrarese 2002)

The SMBH - Host Galaxy Correlations

Dwarf Galaxies

- Dwarf ellipticals (dE) and dwarf spheroidals (dSph) are a completely different family of objects from normal ellipticals they are not just small E's
- In fact, there may be more than one family of gas-poor dwarf galaxies ...
- Dwarfs follow completely different correlations from giant galaxies, suggestive of different formative mechanisms
- They are generally dark matter (DM) dominated, especially at the faint end of the sequence
- One possible scenario is that supernova (SN) winds can remove baryons from these low-mass systems, while leaving the DM, while the more massive galaxies retain and recycle their SN ejecta

Parameter Correlations 10 10 14 14 μ_{ov} μ_{ov} 18 18 (mag arcsec-2) (mag arcsec⁻²) 22 22 Central Surface Brightness vs. Absolute Magnitude **Central Surface Brightness** 26 26 vs. Core Radius 1 2.8 Central Velocity Dispersion vs. Core Radius Core radius vs. Absolute Magnitude 2.4 0 log r_e 2.0 logσ - I 1.6 (kpc) (km s-') -2 1.2 • E UMi Bulges Draco ■ dE 0.8 Carina +S+Irr -3 · Globulars 0.4 -2 log r_c (kpc) -4 -3 0 -24 -20 -16 -12 -8 -4 MB Kormendy 1985

Mean Surface Brightness vs. Absolute Mag.

Mass to Light Ratios

