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Elliptical Galaxies: Kinematics
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The Kinematics of E-Galaxies

Stars in E galaxies have some ordered motions (e.g., rotation), but
most of their kinetic energy 1s in the form of random motions. Thus,
we say that ellipticals are pressure-supported systems

To measure the kinematics within galaxies we use absorption lines.
Each star emits a spectrum N —

which 1s Doppler shifted in
wavelength according to its
motion. Random distribution
of velocities then broadens ~
the spectral lines relative to ™
those of an individual star.
Systemic motions (rotation)
shift the line centroids.
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Kinematical Profiles of E-Galaxies

NGC 1339 P.A.=175° NGC 1373 P.A.=140°
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e Rotation 1s present, but generally not a dominant component of the

kinetic energy
* Velocity dispersion tends to be higher closer to the center



2-Dimensional Kinematics of E-Gal’s
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Velocity Anisotropy in Elliptical Galaxies

I 1 | | i

The ratio of the maximum

12 - . rotational velocity V, and the
mean velocity dispersion o
O o 1 indicates whether the observed
os x X shapes of E’s are due to rotation
Vo . x\ Or anisotropic pressure
o .50
0.6 e ® o \ . . .
« o ° Galaxies on this line are
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e o %o flattened by rotation
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04 02 03 04 05 flattened by anisotropy
€ ellipticity

FiG. 3.-The quantity V_/@ against cllipticity. El]z?ucais with
ME" = 205 are shown as filled circles; ellipticals with M3" < —20.5,
as open circles; and the bulges of disk galaxies, as crosses. The solid
line shows the (V/e, «}relation for oblate galaxies with isotropic
velogity dispersions (Binney 1978).



Velocity Anisotropy in Elliptical Galaxies
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Stellar Populations in Ellipticals

Ellipticals are made mostly Mg line strength vs. radius

from old stars, ages > 1 Gyr oso———— 77
and generally ~ 10 Gyr

Mg, [
They have a broad range of
metallicities (which indicate
the degree of chemical
evolution), up to 10 times

0.35

0.30

Solar!
More metal rich stars are found |
closer to the center e G

This 1s observed as line
strength gradients, or as color [, L
-2.0 -1.5 -1.0 -0.5 0.0

gradients (more metal-rich stars | log[R/R ]
are redder)



Metallicity-Luminosity Relation

also known as the Color-Magnitude Relation

There 1s a relation between the color (a metallicity indicator) and the
total lnminncitv or velaecity dienercign for E galaxies:
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Brighter and dynamically hotter galaxies are redder. This could be
explained 1f small E galaxies were younger or more metal-poor than
the large ones. More massive galaxies could be more effective in
retaining and recycling their supernova ejecta.



Hot Gas in Elliptical Galaxies

_M49'. Optical e M49 X-ray

The gas 1s metal-rich, and thus at least partly a product of stellar evolution
It 1s at a virial temperature corresponding to the velocity dispersion of stars
Another good probe of dark matter in ellipticals...



Stellar vs. Dynamical Mass

M, /Mg
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(M/L) X LO.27iO.O4

(Cappellari et al. 2006)



(M/L) vs. Mass From Gravitational Lensing
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red =V band, blue = B band (Auger et al. 2010, the SLACS collab.)



(M/L) Increases With Radius

100 |  © NGC1399 ﬁ

F  NGC5044 | %

-« NGC3923 _

: j;11::(;1(54454‘:9'? t i ] From
y | o NGC720 %49 | X-ray
é ' | " 1 profiles
Tul N n Jm
T | I i ii of | 1 modeling

| b %‘@‘I’ | f

(Fukazawa et al. 2006) -
1 1 1 'l FEE N | 1 1 'l FEE N | 1 |

0.1 1 10 100
Radius (kpe)

Fully consistent with dynamical modeling of optical data
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