

Global Properties of Spiral Galaxies

Spirals are complex systems, generally more complex and diverse than ellipticals:

- Wide range in morphological appearance
- Fine scale details bulge/disk ratios, structure of spiral arms, resolution into knots, HII regions, etc.
- Wide range in stellar populations old, intermediate, young, and currently forming
- Wide range in stellar dynamics:
 - "cold" rotationally supported disk stars
 - "hot" mainly dispersion supported bulge & halo stars
- Significant amounts of cold interstellar medium (ISM)

Spirals tend to avoid high-density regions (e.g., clusters) as they are dynamically fragile, and can be merged and turned into E's

Spiral Galaxies: Trends Along the Hubble Sequence

	S0-Sa	Sb-Sc	Sd-Sm
Spiral Arms	Absent or tight		Open spiral
Color	Red; late G star	Early G star	Blue; late F star
B-V color	0.7-0.9	0.6-0.9	0.4-0.8
Young stars	few		many
HII regions	Few, small		More, brighter
Gas	Little gas		Much gas
Blue luminosity	1-4 x 10 ¹⁰ L _☉		<0.1-2 x10 ¹⁰ L _☉
Central SB	high		low
mass	$0.5-3 \ge 10^{11} M_{\odot}$		<0.2-1 x 10 ¹¹ M _☉
rotation	Fast rising		Slow rising

Spiral Galaxies: Basic Components

- **Disks:** generally metal rich stars and ISM, nearly circular orbits with little random motion, spiral patterns
 - Thin disks: younger, star forming, dynamically very cold
 - Thick disks: older, passive, slower rotation and more random motions
- **Bulge:** metal poor to super-metal-rich stars, high stellar densities, mostly random motion similar to ellipticals
- **Bar:** present in ~ 50 % of disk galaxies, mostly older stars, some random motions and a ~ solid body rotation?
- Nucleus: central (<10pc) region of very high mass density, massive black hole or starburst or nuclear star cluster
- Stellar halo: very low density (few % of the total light), metal poor stars, globular clusters, low density hot gas, little or no rotation
- **Dark halo:** dominates mass (and gravitational potential) outside a few kpc, probably triaxial ellipsoids, radial profile ~ singular isothermal sphere, DM nature unknown

Photometric Properties of Galaxies

Empirically, the surface brightness declines with distance from the center of the galaxy in a characteristic way for spiral and elliptical galaxies

For spiral galaxies, need first to correct for:

- Inclination of the disk
- Dust obscuration
- Average over spiral arms to obtain a mean profile

Corrected disk surface brightness drops off as:

 $I(R) = I(0) e^{-R/h_R}$

where I(0) is the central surface brightness of the disk, with a broad range of values, but typically ~ 21 - 22 mag/arcsec², and h_R is a characteristic scale length, with typical values:

 $1 \text{ kpc } < h_R < 10 \text{ kpc}$

Bulge-Disk Decomposition

In practice, surface brightness at the center of many spiral galaxies is dominated by stars in a central bulge. Central surface brightness of disk must be estimated by extrapolating inward from larger radii

Component profiles (μ is the logarithmic surface brightness in mags/arcsec2):

$$\mu_{\text{bulge}} = \mu_e + 8.325 \left[\left(r/r_e \right)^{1/4} - 1 \right]$$

$$\mu_{\rm disk} = \mu_0 + 1.082 (r/h).$$

Radial Surface Brightness Profiles ofSpiral GalaxiesNote: semi-log profiles

Edge-On Spirals: Contour Maps

Nearly a pure disk: NGC 4244 Bulge dominated: NGC 7814

Vertical Structure of Galaxy Disks

Stellar density $\sim exp(-z/z_0)$

[Actually, more like sech $(-z/z_0)^2$...]

Also seen in star counts in our Galaxy

Typical values of z_0 range from ~ 0.1 kpc (young disk) to ~ 1 kpc (old thick disk)

Disks Have Cutoffs

Stellar disks have finite radii, R_{max} , typically 3 - 5 h_R

This is not seen in ellipticals: we have never seen their edges

Note that the H I gas extends well beyond the visible cutoff, and of course so does the dark matter

There is a trend that the stars are younger at large radii in disks: inside-out formation?

Inclination Effects

- We can integrate surface brightness to obtain a total apparent magnitude (in a given filter), but we need to correct for:
- Inclination face-on $(i = 0^{\circ})$, edge-on $(i = 90^{\circ})$
 - To first order, cos i = b/a where *a* and *b* are the observed major and minor axes (assume disk is intrinsically circular)
 - But disks also have an intrinsic thickness, c, so we find

 $cos^2 i = \{(b/a)^2 - q^2\}/1 - q^2$

where q^2 is the intrinsic ratio of $c/a \sim 0.13$

- Dust (both in the MW, and internal absorption)
 - Internal absorption is corrected for using empirical formulae, e.g. in the B band: $A_B(i) = 0.70 \log[sec(i)]$ (in mags), or in the *I* band, $A_I = 1.12(\pm 0.05) \log (a/b)$

