The Very Early Universe

Physical Interactions in the Early Universe

As we get closer to $t \rightarrow 0$ and $T \rightarrow \infty$, we probe physical regimes in which different fundamental interactions dominate. Their strength is a function of energy, and at sufficiently high energies they become unified

Each of the unifications (or, moving forward in time, spontaneous symmetry breakings) is effectively a phase transition in the early universe, as the dominant energy carriers change

The Electroweak Era: up to 10⁻¹⁰ sec

- At $T \sim 10^{28}$ K, three distinct forces in the universe: Gravity, Strong, and **Electroweak:** unified Electromagnetism and Weak nuclear force
- At $T < 10^{15}$ K, Electromagnetism and Weak nuclear force split; this is the **Electroweak phase transition**
- Limit of what we can test in particle accelerators

The GUT Era: up to 10⁻³⁵ sec

- At $T > 10^{29}$ K, electroweak force and strong nuclear force join to form the GUT (grand unified theory) interaction
- Relatively solid theoretical framework (but may be wrong), but not directly testable in experiments
- This **GUT phase transition** may be driving the Inflation (but there are other candidates)

Matter - Antimatter Asymmetry

They basically have all annihilated away except a tiny difference between them

This process leads to the preponderance of photons over the leftover baryons today by the same factor ...

Where does it come from?

The Cosmic Baryogenesis

• The conditions required for the creation of more matter than anti-matter were first derived by A. Sakharov in 1967:

1. Baryon number violation

- Otherwise have same no. of particles and antiparticles
- Never been observed
- Predicted to occur in several GUT theories
- 2. C and CP violation
 - Parity of antiparticles is opposite to that of particles
 - CP violation discovered in 1964 (Cronin and Fitch)
- **3. Departure from non-thermal equilibrium**
 - Otherwise all reactions go both ways
 - Provided by the expansion of the universe
- Now believed to be the mechanism responsible for the matter antimatter asymmetry

Planck Units

Proposed in 1899 by M. Planck, as the "natural" system of units based on the physical constants:

Name	Dimension	Expression	Approx. <mark>SI</mark> equivalent measure
Planck time	Time (T)	$t_P = \frac{l_P}{c} = \sqrt{\frac{\hbar G}{c^5}}$	5.39121 × 10 ⁻⁴⁴ s
Planck length	Length (L)	$l_P = \sqrt{\frac{\hbar G}{c^3}}$	1.61624 × 10 ⁻³⁵ m
Planck mass	Mass (M)	$m_P = \sqrt{\frac{\hbar c}{G}}$	2.17645 × 10 ⁻⁸ kg
Planck charge	Electric charge (Q)	$q_P = \sqrt{\hbar c 4\pi\epsilon_0}$	1.8755459 × 10 ⁻¹⁸ C
Planck temperature	Temperature (Θ)	$T_P = \frac{m_P c^2}{k} = \sqrt{\frac{\hbar c^5}{Gk^2}}$	1.41679 × 10 ³² K

They may be indicative of the physical parameters and conditions at the era when gravity is unified with other forces \dots assuming that G, c, and h do not change \dots and that there are no other equally fundamental constants

"Derived" Planck Units

Name	Dimension	Expression	Approx. SI equivalent measure
Planck energy	Energy (ML ² T ⁻²)	$E_P = m_P c^2 = \sqrt{\frac{\hbar c^5}{G}}$	1.9561 × 10 ⁹ J
Planck force	Force (MLT ⁻²)	$F_P = \frac{E_P}{l_P} = \frac{c^4}{G}$	$1.21027 \times 10^{44} \text{ N}$
Planck power	Power (ML^2T^{-3})	$P_P = \frac{E_P}{t_P} = \frac{c^5}{G}$	$3.62831 \times 10^{52} \text{ W}$
Planck density	Density (ML ⁻³)	$\rho_P = \frac{m_P}{l_P^3} = \frac{c^5}{\hbar G^2}$	$5.15500 \times 10^{96} \text{ kg/m}^3$
Planck angular frequency	Frequency (T ⁻¹)	$\omega_P = \frac{1}{t_P} = \sqrt{\frac{c^5}{\hbar G}}$	$1.85487 \times 10^{43} \text{ s}^{-1}$
Planck pressure	Pressure (ML ⁻¹ T ⁻²)	$p_P = \frac{F_P}{l_P^2} = \frac{c^7}{\hbar G^2}$	4.63309 × 10 ¹¹³ Pa
Planck current	Electric current (QT ⁻¹)	$I_P = \frac{q_P}{t_P} = \sqrt{\frac{c^6 4\pi\epsilon_0}{G}}$	3.4789×10^{25} A
Planck voltage	Voltage (ML $^{2}T^{-2}Q^{-1}$)	$V_P = \frac{E_P}{q_P} = \sqrt{\frac{c^4}{G4\pi\epsilon_0}}$	$1.04295 \times 10^{27} \mathrm{V}$
Planck impedance	Resistance (ML ² T ⁻¹ Q ⁻²)	$Z_P = \frac{V_P}{I_P} = \frac{1}{4\pi\epsilon_0 c} = \frac{Z_0}{4\pi}$	2.99792458 × 10 ¹ Ω

Towards the Planck Era

"Infinity, and Beyond..."

- Probably gravity unified with the other forces so we need a theory of Quantum Gravity
 - Characteristic time ~ Planck Time ~ 10^{-43} sec after the Big Bang
 - Size of the universe then ~ Planck Length
- *Highly Speculative* theories include
 - M-theory particles are excitations on high dimensional membranes (D-branes). This has taken over from(and includes)
 - String Theory, where particles are different vibrations of one type of strings

- Ekpyrotic cosmology, String Landscape, ...
- The future of fundamental physics?

Next: The Contents of the Universe

