The Early Universe

The Key Ideas

- Pushing backward in time towards the Big Bang, the universe was hotter and denser in a fairly predictable manner (aside from surprising "glitches" such as the inflation...)
- At any given time, the temperature translates into a characteristic mass of particles, which dominate that epoch: the Universe as the ultimate accelerator?
- As the energies increase, different physical regimes and different fundamental interactions come into play
- The closer we get to the Big Bang (i.e., further away from the experimentally probed regime), the less certain the physics: the early Universe as the laboratory of physics beyond the standard model?
- Our extrapolations must break down by the epoch of $\sim 10^{-43}$ sec \sim Plack time, where quantum gravity must be important

Some Key Moments in the Thermal History of the Universe:

- Planck era, $t \sim 10^{-43}$ sec: quantum gravity, ... ??? ...
- Inflation, t ~ 10 33 sec: vacuum phase transition, exponential expansion
- **Grand Unification, t** ~ 10 32 sec: strong and electroweak interactions split
- **Baryogenesis**, $t \sim 10^{-6}$ sec: quark-hadron transition
- Nucleosynthesis, $t \sim 1 \text{ ms to } 3 \text{ min}$: D, He, Li, Be form
- Radiation to matter dominance transition, t ~ 10⁵ yr: structure begins to form
- Recombination, t ~ 380,000 yr: hydrogen becomes neutral, CMBR released, dark ages begin
- **Reionization, t ~ 0.3 1 Gyr**: first galaxies and QSOs reionize the universe, the cosmic renaissance

The Cosmic Thermal History ... on a logarithmic time axis - a theorist's delight!

Thermal History of the Early Universe

Age	Temperature	Processes
$t < 10^{-10} s$	$T > 10^{15} K$	GUT
$10^{-10} < t < 10^{-4} s$	$10^{15} > T > 10^{12} K$	e^+ , e^- , quarks, γ , ν
$t \sim 10^{-4} s$	$T \sim 10^{12} K$	Quarks-> n, p $\mu^+\mu^- > \nu_{\mu}, \nu_{\mu}$
$10^{-10} < t < 10^{-4} s$	$10^{12} > T > 10^{10} K$	$e^+, e^-, n, p, \gamma, v_e$
t ~ 0.01 s	$T \sim 10^{11} K$	assymetry in n, p
t ~ 4 s	$T \sim 5 \times 10^9 K$	$e^{+}, e^{-} > v_{e}, v_{e}$
		$n \rightarrow p + e^{-} + v_e$
t ~ 100 s	$T \sim 10^4 K$	nucleosynthesis
$t \sim 10^{11} s$	T ~ 16 500 K	Matter
		domination
$t \sim 10^{13} s$	T ~ 3000 K	Decoupling

Another Schematic Outline:

C Addison-Wesley Longman

Empirical Evidence

- The CMBR: probes the recombination era, $t \sim 10^5$ yr, $z \sim 1100$, based on a well understood atomic and macroscopic physics
- Nucleosynthesis: probes the $t \sim 10^{-3}$ 10^2 sec era, $z \sim 10^9$, compare the model predictions with observed abundances of the lightest elements, based on a well understood nuclear physics
- Matter-antimatter asymmetry: probes the baryogenesis era, $t \sim 10^{-6} \sec, z \sim 10^{12}$, but only in suggesting that some symmetry breaking did occur
- **Predictions of the inflationary scenario:** flatness, uniformity of CMBR, absence of monopoles, the right type of density fluctuation spectrum it all supports the idea that inflation did happen, but does not say a lot about its detailed physics
- Cosmological observations can indicate or constrain physics well outside the reach of laboratory experiments

CMBR and the Recombination Era

Prediction of CMB is trivial in Hot Big Bang model:

- Hot, ionised initial state should produce thermal radiation
- Photons decouple when universe stops being ionised (last scattering)
- Expansion by factor *a* cools a blackbody spectrum from *T* to *T/a*
- Therefore we should now see a cool blackbody background
 - Alpher and Herman, 1949,
 "A temperature now of the order of 5 K"
 - Dicke et al., 1965, "<40 K"
 - note that the Gamow, Alpher & Herman prediction had been nearly forgotten at this time!

The CMBR Disoveries

First seen in 1941 (yes, 1941!)

- Lines seen in stellar spectra identified as interstellar CH and CN (Andrew McKellar, theory; Walter Adams, spectroscopy)
- Comparison of lines from different rotational states gave "rotational temperature" of 2-3 K

- Unfortunately Gamow *et al*. did not have known about this
- Hoyle made the connection in 1950:
 - "[the Big Bang model] would lead to a temperature of the radiation at present maintained throughout the whole of space much greater than McKellar's determination for some regions within the Galaxy."
- So, Penzias & Wilson made the recognized discovery in 1964

Discovery of the Cosmic Microwave Background (CMBR): A Direct Evidence for the Big Bang

Arno Penzias & Robert Wilson (1965)

Nobel Prize, 1978

The CMBR Spectrum: A Nearly Perfect Blackbody

Residuals from the BB

strongly limit possible

CMBR Sky From COBE

Mean subtracted; Dipole anisotropy visible

Dipole subtracted

Galaxy emission subtracted; primordial density fluctuations visible

Temperature of Recombination

Mean photon energy: $\langle E \rangle \sim 3k_B T$

Ionisation energy of H: E = 13.6 eV

Photoionisation Temperature: $T = \frac{13.6 \text{ eV}}{3k_B} = 50000 \text{K}$

But there are many more photons than H ions: $n_{\gamma} \approx 10^9 n_p$

Thus, the T can be lower and have enough photons with high enough energies to ionize H! Boltzmann distribution: $n_{\gamma}(>E) \propto \exp\left(-\frac{E}{k_BT}\right)$

So the actual T of recombination is:

$$T = \frac{13.6 \,\mathrm{eV}}{3k_B 9 \ln(10)} = 2500 \mathrm{K}$$

And thus, $Z_{rec} \sim 1100$

The Extent of Recombination

This phase transition (ionized to neutral gas) has a finite thickness: most of the plasma recombines before the last × scattering, which is the CMBR photosphere we see

Figure 9.4: The fractional ionization X as a function of redshift during the epoch of recombination. A baryon-to-photon ratio of $\eta = 5.5 \times 10^{-10}$ is assumed.

Ζ

event	redshift	temperature (K)	time (megayears)	
radiation-matter equality	3570	9730	0.047	
recombination	1370	3740	0.24	
photon decoupling	1100	3000	0.35	
last scattering	1100	3000	0.35	

Table 9.1: Events in the early universe

Next:

The Big Bang Nucleosynthesis (BBNS)

