Hubble Diagram as a Cosmological Test

z

The Hubble Diagram: Early Work

• Mostly done at Palomar by Sandage and collaborators, and by Gunn and collaborators, using brightest cluster ellipticals, with corrections for cluster richness etc.

Effects of Galaxy Evolution

- Alas, galaxies were generally brighter in the past, since there was more star formation, and young, luminous, massive stars have short lifetimes
- This tends to overwhelm the cosmological effects, especially in the bluer bands

The Hubble diagram → for powerful radio galaxies (Djorgovski et al.)

The Supernova Ia Hubble Diagram

- The field was reborn with the advent of the SN Ia Hubble diagram, following the standardization of their peak brightness using light curve shapes
- There are still some unknowns:
 - Explosions not fully understood; many possible models: Chandrasekhar-mass models, deflagrations vs. detonations
 - Progenitor systems not known: white dwarfs yes, but double degenerate vs. single degenerate binaries ...
- SN Ia are not really standard candles ...
 - There are large variations in light curve shapes, colors, spectral evolution, and some clear outliers; possible differences in physical parameters, e.g, Ni mass
- But they *are* good distance indicators, after the empirical correction for light curve shapes
- Do they evolve (e.g., due to metallicity)? Maybe a little

Warning! SNe are a Messy Phenomenon!

Various numerical simulations of SN explosions

Things could still go wrong ...

Examples of High-Redshift SNe

HST observations of SNe in distant galaxies (*Riess et al.*)

Note: you need to ...

- Detect them
- Measure the light curves
- Do the K-corrections
- Get the redshifts

This yielded the evidence for an accelerating universe and the positive cosmological constant, independently and simultaneously by two groups: The Supernova **Cosmology Project at** LBL (Perlmutter et al.), and ...

... and by the High-Z Supernova Team (B. Schmidt, A. Riess, et al.)

Both teams found very similar results ...

Current Evidence Points to $\Omega_{\Lambda} \sim 0.7$

... So They Got a Nobel Prize

A. Riess

S. Perlmutter

B. Schmidt

Expansion History of the Universe

Perlmutter, Physics Today, April 2003

A Modern Version of the SN Hubble Diagram

SN measurements on their own actually define an allowed region in the plane of $[\Omega_m, \Omega_\Lambda]$

Example of **degeneracy**: distinct universes produce identical results for this cosmological test

We need some additional, constraints (e.g., flatness) to pin down the actual value of Ω_{Λ}

GRBs as Standard Candles?

The Angular Diameter Test

Angular size

Requires a population on non-evolving sources with a fixed proper size - "standard rulers". Some suggested candidates:

- Isophotal diameters of brightest cluster gal.
- Mean separation of galaxies in clusters
- Radio source lobe separations

Model with a higher density and/or $\Lambda \leq 0$

Model with a lower density and/or $\Lambda > 0$

redshift

Next: Cosmology With the Cosmic Microwave Background

