# Tests for the Expansion of the Universe







#### **Tests for the Expansion of the Universe**

- Tolman surface brightness (SB) test
  - In a stationary, Euclidean universe SB = const.
  - In an expanding universe,  $SB \sim (1+z)^{-4}$
  - In a "tired light" model,  $SB \sim (1+z)^{-1}$
- Time dilation of Supernova light curves
  - Time stretches by a factor of (1+v/c) = (1+z)
- The match between the energy density and *T*<sup>4</sup> for the blackbody and the CMBR
  - For a blackbody, energy density  $u \sim T^4$
  - In an expanding universe, for photons, energy density is  $u \sim (1+z)^4$ , and since  $T \sim 1/\lambda \sim (1+z)$ ,  $u \sim T^4$

#### **The Tolman Test**

Surface brightness is flux per unit solid angle:  $B = \frac{f}{d\omega}$ 

This is the same as the luminosity per unit area, at some distance D. In cosmology,  $B = \frac{L}{D_{\perp}^2} \frac{D_A^2}{dl^2}$ 

In a stationary, Euclidean case,  $D = D_L = D_A$ , so the distances cancel, and SB = const. But in an expanding universe,  $D_L = D (1+z)$ , and  $D_A = D / (1+z)$ , so:

$$B = \frac{L}{dl^2} \frac{D_A^2}{D_L^2} = \frac{L}{dl^2} (1+z)^{-4}$$

Note that this is independent of cosmology!

# **Performing the The Tolman Test**

We need a standard (constant) unit of surface brightness = luminosity/area, to observe at a range of redshifts (a "standard fuzz"?)

A good choice is the intercept of surface brightness scaling relations for elliptical galaxies in clusters



#### **The Tolman Test Results**



Surface brightness intercept of the Fundamental Plane correlation, for elliptical galaxies in clusters out to z ~ 0.6. It assumes a reasonable galaxy evolution model correction.

<sup>(</sup>from Pahre et al.)

# **Time Dilation of Supernova Lightcurves**



# **Time Dilation of Supernova Lightcurves**



Normalized lightcurve width increases linearly with (1+z), as expected in an expanding universe

After correcting for the expansion, the stretch is constant

(Goldhaber et al.)

