The Hubble Space Telescope Distance Scale Key Project

... and Beyond

The HST H₀ Key Project

- Started in 1990, final results in 2001! Leaders include W. Freedman, R. Kennicutt, J. Mould, J. Huchra, and many others (reference: Freedman *et al.* 2001, ApJ, 553, 47)
- Observe Cepheids in ~18 spirals to test the universality of the Cepheid P-L relation and greatly improve calibration of other distance indicators
- Their Cepheid P-L relation zeropoint is tied directly to the distance to the LMC (largest source of error for the H_0 !)
- Combining different estimators, they find:

$H_0 = 72 \pm 3$ (random) ± 7 (systematic) km/s/Mpc

• Some people disagree with their adopted value for the distance to the LMC ... and some other methods give different answers ... but most are converging to this value

The HST H₀ Key Project

Sample images for discovery of Cepheids

The HST H₀ Key Project

Sample Cepheid light curves for NGC 1365

The HST H_0 Key Project Results

The H _o Key Project:	Uncertainties in H_0 for Secondary Methods		
Uncertainties			Error (random, systematic
	Method	H_0	(%)
36 Type Ia SN, 400	$0 < cz < 30,000 \text{ km s}^{-1} \dots$	71	$\pm 2 \pm 6$
21 TF clusters, $1000 < cz < 9000 \text{ km s}^{-1}$		71	\pm 3 \pm 7
11 FP clusters, $1000 < cz < 11,000$ km s ⁻¹		82	$\pm 6 \pm 9$
SBF for 6 clusters, 3	$3800 < cz < 5800 \text{ km s}^{-1} \dots$	70	\pm 5 \pm 6
4 Type II SN, $1900 < cz < 14,200 \text{ km s}^{-1} \dots$		72	\pm 9 \pm 7

OVERALL SYSTEMATIC ERRORS AFFECTING ALL METHODS

Source of Uncertainty	Description	Error (%)
LMC zero point	Error on mean from Cepheids, TRGB,	
	SN 1987A, red clump, eclipsing binaries	± 5
WFPC2 zero point	Tie-in to Galactic star clusters	± 3.5
Reddening	Limits from NICMOS photometry	± 1
Metallicity	Optical, NICMOS, theoretical constraints	± 4
Bias in Cepheid PL	Short-end period cutoff	± 1
Crowding	Artificial star experiments	+5, -0
Bulk flows on scales >10,000 km s ^{-1}	Limits from SN Ia, CMB	± 5

NOTE.—Adopted final value of H_0 : $H_0 = 72 \pm 3$ (random) ± 7 (systematic) km s⁻¹ Mpc⁻¹.

The HST H₀ Key Project Results

Technique	$H_0 ({\rm kms^{-1}Mpc^{-1}})$	Cepheid calibration	Reference
Key Project summary	72±8	New PL+Z	Freedman et al. 2001
Cepheids+IRAS flows	85 ± 5	New PL	Willick & Batra 2001
Type Ia Supernovae	59 ± 6	Sandage team	Parodi et al. 2001
	59 ± 6	Sandage team	Saha et al. 2001
	$71 \pm 2 \pm 6$	New PL+Z	Freedman et al. 2001
	74 ± 3	New PL+Z	Tonry et al. 2003, in prep.
	$73 \pm 2 \pm 7$	New PL+Z	Gibson & Stetson 2001
I-band SBFs	$77 \pm 4 \pm 7$	Orig. KP	Tonry et al. 2000
	$70\pm5\pm6$	New PL+Z	Freedman et al. 2001
	75	New PL+Z	Ajhar et al. 2001
H-band SBFs	$72 \pm 2 \pm 6$	Orig. KP+I-SBF	Jensen et al. 2001
	$77\pm3\pm6$	New PL+Z	Jensen et al. 2003, in prep.
K-band SBFs	71 ± 8	Orig. KP+I-SBF	Liu & Graham 2001
Tully-Fisher	$71\pm3\pm7$	New PL+Z	Freedman et al. 2001
Fundamental Plane	$82\pm 6\pm 9$	New PL+Z	Freedman et al. 2001
	$73 \pm 4 \pm 11$	New PL+Z	Blakeslee et al. 2002
Type II Supernovae	$72 \pm 9 \pm 7$	New PL+Z	Freedman et al. 2001
	75 ± 7	New PL+Z	M. Hamuy, private comm.
Globular Custer LF	\sim 70	similar to Orig. KP	Okon & Harris 2002
Sunyaev-Zel'dovich	$60\pm3\pm30\%$		Carlstrom et al. 2002
Gravitational lenses	61 to 65		Fassnacht et al. 2002
	$59 \pm 12 \pm 3$		Treu & Koopmans 2002
Type Ia SNe (theory)	67 ± 9		Höflich & Khokhlov, 1996
Type II SNe (theory)	67 ± 9		Hamuy 2001

Table 1.1. A Few Recently Published Hubble Constant Measurements

How Well Do the Different Distance Indicators Agree? The best check on their reliability ...

Lets look at the modern distance measurements to the Large Magellanic Cloud (LMC), one of the first stepping stones in the distance scale.

Different techniques give distance moduli $(m-M) = 5 \log [D/pc] - 5$, in the range of 18.07 to 18.70 mag, corresponding to a range in distances of 41 to 55 kpc, with typical quoted errors of ~ 5 – 10%

How	Indicator	$(m-M)_{0,LMC}$	Authors
	Subdwarf fitting	18.54 ± 0.12	Carretta et al. 1998
far is			
the	Cepheids	18.70 ± 0.10	Feast & Catchpole 1997
		18.50 ± 0.07	Madore & Freedman 1998
LMC?	Miras	18.54 ± 0.18	van Leeuwen et al. 1997
	SN1987a ring	18.37 ± 0.04	Gould & Uza 1998 (circular)
		18.44	Gould & Uza 1998 (elliptical)
		18.59 ± 0.03	Panagia et al. 1997
		18.67 ± 0.08	Lundqvist & Sonneborn 1997
	Eclipsing binaries	18.6 ± 0.2	Guinan et al. 1995
	HB clump	18.07 ± 0.12	Udalski 1998
		18.31 ± 0.12	revised by Girardi et al. 1998
		18.43 ± 0.12	E(B-V)=0.10
	HB trig. parallax	18.37 ± 0.10	Gratton 1998
		18.42 ± 0.12	eliminating HD17072
	Stat. parallax	18.29 ± 0.12	Layden et al. 1996
		18.26 ± 0.15	Fernley et al. 1998a
	Baade-Wesselink	18.26 ± 0.04	Clementini et al. 1995
		18.34 ± 0.04	Clementini et al. 1995 (p= 1.38)
		18.53 ± 0.05	McNamara 1997
	GC Dynamical models	18.44 ± 0.11	Rees 1996, revised by Chaboyer

Another Test: Nuclear Masers in NGC 4258

Herrnstein *et al.* (1999) have analyzed the proper motions and radial velocities of NGC 4258's nuclear masers. The orbits are Keplerian and yield a distance of 7.2 ± 0.3 Mpc, or $(m-M)_0 = 29.29 \pm 0.09$. This is inconsistent with the Cepheid distance modulus of 29.44 ± 0.12 at the ~1.2 σ level.

Bypassing the Distance Ladder

There are a two methods which can be used to large distances, which don't depend on local calibrations:

- 1. Gravitational lens time delays
- 2. Synyaev-Zeldovich (SZ) effect for clusters of galaxies

Both are very *model-dependent!*

Both tend to produce values of H_0 that are somewhat lower than the Key Project, but within the errors, and possibly explained by systematic effects

Gravitational Lens Time Delays

- Assuming the mass model for the lensing galaxy of a gravitationally lensed quasar is well-known (!?), the different light paths taken by various images of the quasar will lead to time delays in the arrival time of the light to us. This be can be traced by the quasar variability
- If the lensing galaxy is in a cluster, we also need to know the mass distribution of the cluster and any other mass distribution along the line of sight. The modeling is complex!

How Does It Work?

The difference in the light paths is $(a+b) - (c+d) = \Delta S = c \Delta t$ where Δt is the measured time delay

For a fixed lensing geometry, $\Delta S \sim D_L \text{ or } D_S$ and the ratio $\Delta S/D_L \text{ or } \Delta S/D_S$ is also given by the geometry Assuming that, measuring Δt gives ΔS , and thus $D_L \text{ or } D_S$

Synyaev-Zeldovich Effect

- Clusters of galaxies are filled with hot X-ray gas
- The electrons in the intracluster gas will scatter the background photons from the CMBR to higher energies (frequencies) and distort the blackbody spectrum

Galaxy Cluster with hot gas

This is detectable as a slight temperature dip or bump (depending on the frequency) in the radio map of the cluster, against the uniform CMBR background For every photon scattered away from the observer, there is another scattered towards.

Synyaev-Zeldovich Effect

- If we can measure the electron density and temperature of the X-ray emitting gas along the line of sight from X-ray measurements, we can estimate the path length (~ cluster diameter) along the line of sight
- If we assume the cluster is spherical (??), from its angular diameter (projected on the sky) we can determine the distance to the cluster
- Potential uncertainties include cluster substructure or shape (e.g., nonspherical). It is also non-trivial to measure the X-ray temperature to derive the density at high redshifts.

