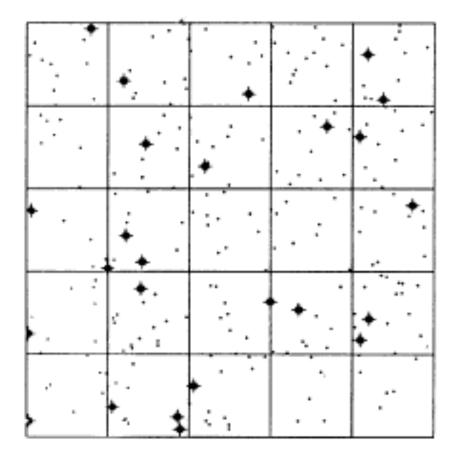
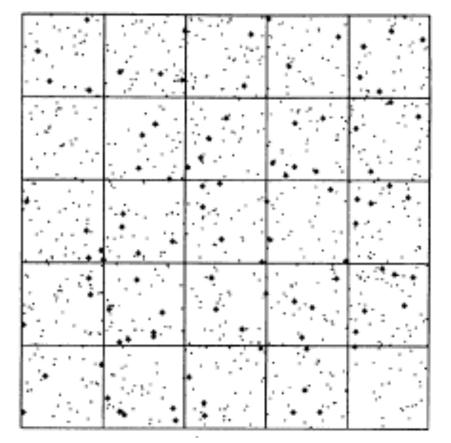

Distance Indicator Relations

The Basic Idea:

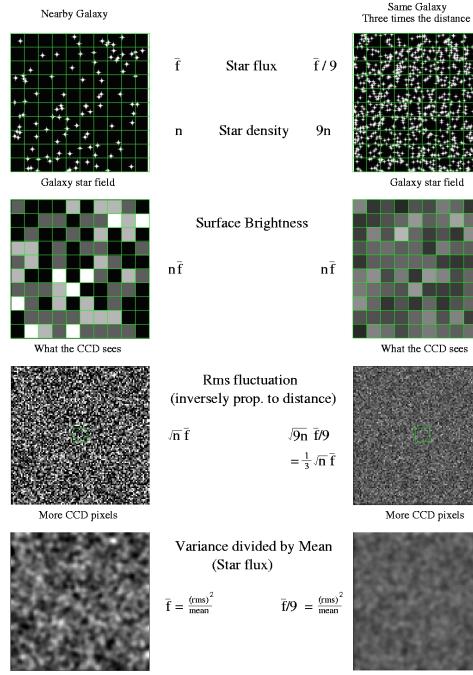

- Need a correlation between a distanceindependent quantity, "X", (e.g., temperature or color for stars in the H-R diagram, or the period for Cepheids), and a distance-dependent one, "Y", (e.g., stellar absolute magnitude, *M*)
- Two sets of objects at different distances will have a systematic shift in the *apparent* versions of "y" (e.g., stellar apparent magnitude, *m*), from which we can deduce their *relative distance*


• This obviously works for stars (main sequence fitting, periodluminosity relations), but can we find such relations for galaxies?

Surface Brightness Fluctuations

Consider stars projected onto a pixel grid of your detector:

Nearby Galaxy



A galaxy twice farther away is "smoother"

Surface Brightness Fluctuations

- Surface brightness fluctuations for old stellar populations (E's, SO's and bulges) are based primarily on their giant stars
- Assume typical average flux per star <f>, the average flux per pixel is then N<f>, and the variance per pixel is N<f²>. But the number of stars per pixel N scales as D² and the flux per star decreases as D⁻². Thus the variance scales as D⁻² and the RMS scales as D⁻¹. Thus a galaxy twice as far away appears twice as smooth. The average flux <f> can be measured as the ratio of the variance and the mean flux per pixel. If we know the average L (or M) we can measure D
- $\langle M \rangle$ is roughly the absolute magnitude of a giant star and can be calibrated empirically using the bulge of M31, although there is a color-luminosity relation, so $\langle M_{\rm I} \rangle = -1.74 + 4.5 [(V-I)_0 1.15]$
- Have to model and remove contamination from foreground stars, background galaxies, and globular clusters
- Can be used out to ~ 100 Mpc in the IR, using the HST

Surface Brightness Fluctuations

Blurred by atmosphere

Blurred by atmosphere

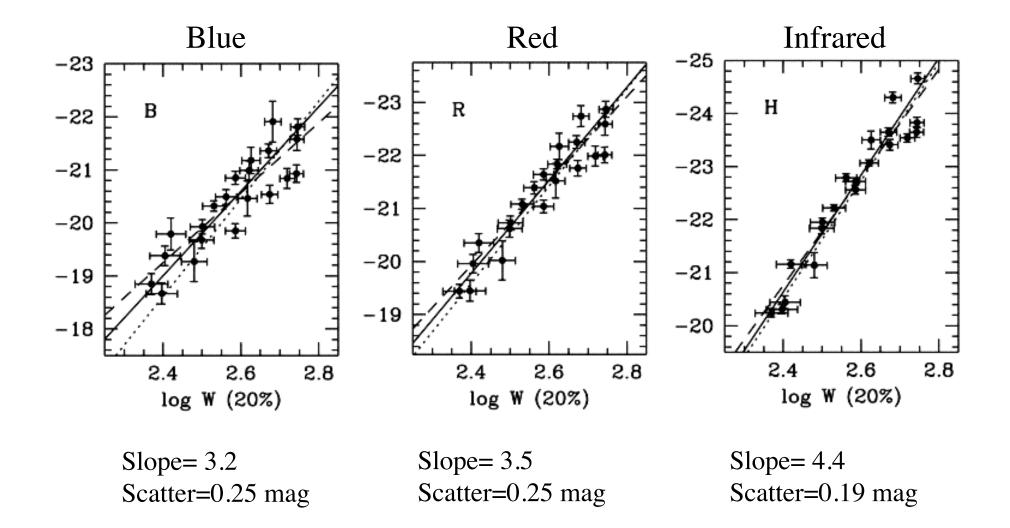
Pushing Into the Hubble Flow

- Hubble's law: $D = H_0 v$
- But the total observed velocity v is a combination of the cosmological expansion, and the *peculiar velocity* of any given galaxy, $v = v_{cosmo} + v_{pec}$
- Typically $v_{pec} \sim$ a few hundred km/s, and it is produced by gravitational infall into the local large scale structures (e.g., the local supercluster), with characteristic scales of tens of Mpc
- Thus, one wants to measure H_0 on scales greater than tens of Mpc, and where $v_{cosmo} >> v_{pec}$. This is the Hubble flow regime
- This requires *luminous standard candles* galaxies or Supernovae

Galaxy Scaling Relations

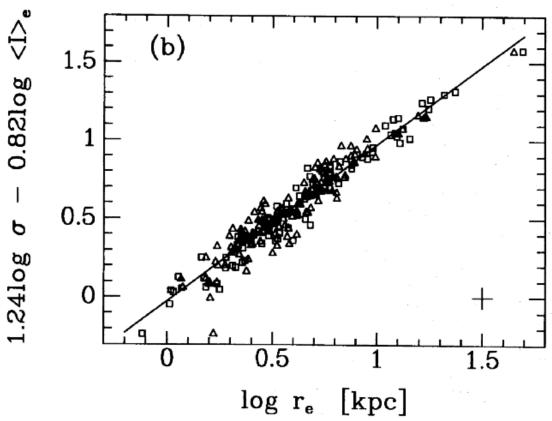
- Once a set of distances to galaxies of some type is obtained, one finds correlations between distance-dependent quantities (e.g., luminosity, radius) and distance-independent ones (e.g., rotational speeds for disks, or velocity dispersions for ellipticals and bulges, surface brightness, etc.). These are called *distance indicator relations*
- Examples:
 - Tully-Fisher relation for spirals (luminosity vs. rotation speed)
 - Fundamental Plane relations for ellipticals
- These relations must be calibrated locally using other distance indicators, e.g. Cepheids or surface brightness fluctuations; then they can be extended into the general Hubble flow regime
- Their origins and thus their universality are not yet well understood. Caveat emptor!

The Tully-Fisher Relation

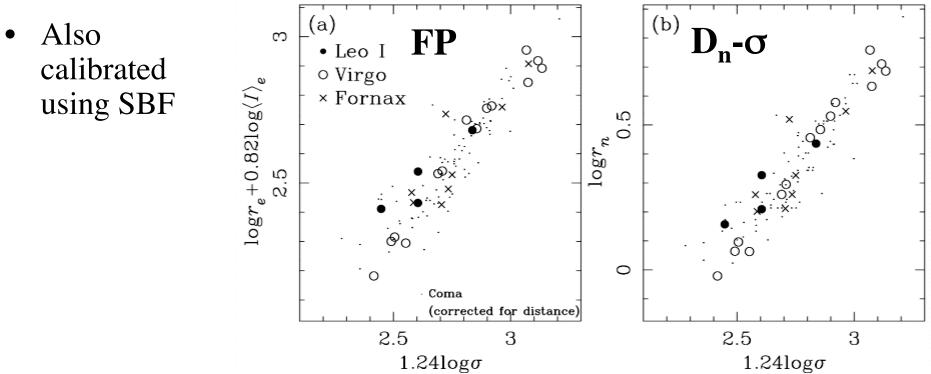

• A well-defined luminosity vs. rotational speed (often measured as a H I 21 cm line width) relation for spirals:

 $L \sim v_{\rm rot}^{\gamma}, \gamma \approx 4$, varies with wavelength

Or: $M = b \log (W) + c$, where:


- *M* is the absolute magnitude
- W is the Doppler broadened line width, typically measured using the HI 21cm line, corrected for inclination $W_{\text{true}} = W_{\text{obs}} / sin(i)$
- Both the slope b and the zero-point c can be measured from a set of nearby spiral galaxies with well-known distances
- The slope b can be also measured from any set of galaxies with roughly the same distance - e.g., galaxies in a cluster - even if that distance is not known
- Scatter is $\sim 10-20\%$ at best, which limits the accuracy
- Problems include dust extinction, so working in the redded bands is better

Tully-Fisher Relation at Various Wavelengths


Fundamental Plane Relations

- A set of bivariate scaling relations for elliptical galaxies, including relations between distance dependent quantities such as radius or luminosity, and a combination of two distanceindependent ones, such as velocity dispersion or surface brightness
- Scatter ~ 10%, but it could be lower?
- Usually calibrated using surface brightness fluctuations distances

The D_n - σ Relation

- A projection of the Fundamental Plane, where a combination of radius and surface brightness is combined into a *modified isophotal diamater* called D_n which is the angular diameter that encloses a mean surface brightness in the *B* band of $\langle \mu_B \rangle = 20.75 \text{ mag/arcsec}^2$
- D_n is a *standard yardstick*, and can be used to measure relative distances to ellipticals

Next: Supernova Standard Candles