
Distances in Cosmology 



The Basis of Cosmological Tests	
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All cosmological tests essentially consist of comparing 
some measure of (relative) distance (or look-back time) 
to redshift.  Absolute distance scaling is given by the H0.	




Distances in Cosmology	

A convenient unit is the Hubble distance,	


DH = c / H0 = 4.283 h70
-1 Gpc = 1.322Î1028 h70

-1 cm	

and the corresponding Hubble time,	


tH = 1 / H0 = 13.98 h70
-1 Gyr = 4.409Î1017 h70

-1 s	


At low z’s, distance D ≈ z DH .  But more generally, 
the comoving distance to a redshift z is:	


where	
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But the quantity really useful in computing the various 
physical quantities of interest is the “transverse 
comoving distance”, where we account for the curvature:	


where Ωk is defined by:	




Distances in Cosmology	


To simplify, let’s put ourselves at the origin, then the light 
path is purely radial, 
and dθ and dφ = 0, so: 

Taking the square root of both 
sides and integrating: 

We can derive this for using the RW metric: 
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In general this is non-analytic.  In a special case of a Λ = 0 
Universe, we have q0 = Ω0 / 2, and: 

For a non-zero Λ universe:  

Assuming Ωk<0, if Ωk >0 then the sinh becomes a sin and 
if Ωk=0 then the sinh and the Ωk drop out and all that’s 
left is the integral, which has to be evaluated numerically.  
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Luminosity Distance	

In relativistic cosmologies, observed flux (bolometric, or 
in a finite bandpass) is:	


f = L / [ (4π D2) (1+z)2 ] 	


One factor of (1+z) is due to the energy loss of photons, 
and one is due to the time dialation of the photon rate.	


A luminosity distance is defined as DL = D (1+z), so that 
f = L / (4π DL

2).	


For a specific flux, however,	


(since Angstroms are 
also stretched by 1+z)	




Luminosity 
Distance	


Ωm = 1,	

ΩΛ = 0	


Ωm = 0.05,	

ΩΛ = 0	


Ωm = 0.2,	

ΩΛ = 0.8	




Angular Diameter Distance	

Angular diameter of an object with a fixed comoving size 
X is by definition	


θ = X / D	

However, an object with a fixed proper size X is (1+z) 
times larger than in the comoving coordinates, so its 
apparent angular diameter will be	


                                              θ = (1+z) X / D	


Thus, we define the angular diameter distance	

DA = D / (1+z) , so that the angular diameter of an object 
whose size is fixed in proper coordinates is θ = X / DA	




Angular 
Diameter 
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Ωm = 1,	

ΩΛ = 0	


Ωm = 0.05, ΩΛ = 0	


Ωm = 0.2,	

ΩΛ = 0.8	




Volume Element	


This is useful, e.g., when computing the source counts.	


Generally, it has to be evaluated numerically.	


The total volume out to some z, over the whole sky, is: 	




Volume 
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Ωm = 1, ΩΛ = 0	


Ωm = 0.05,	

ΩΛ = 0	


Ωm = 0.2,	

ΩΛ = 0.8	




Age and Lookback Time	

The time elapsed since some redshift z is:	


Generally it has to be integrated numerically, except in 
some special cases, such as Λ = 0.	


Integrating to infinity gives the age of the universe, and 
the difference of the two is the age at a given redshift.	




Age and 
Lookback 
Time	


Ωm = 1, ΩΛ = 0	


Ωm = 0.05, ΩΛ = 0	


Ωm = 0.2, ΩΛ = 0.8	




Cosmological Tests: Expected Generic 
Behavior of Various Models	


R(t)	


t	
| 
t0	


0	


R(t)/R0	


 t - t0	

0	


Models with a lower density and/or positive 
Λ expand faster, are thus larger, older today, 
have more volume and thus higher source 
counts, at a given z sources are further away 
and thus appear fainter and smaller	


Models with a 
higher density 
and lower Λ 
behave exactly 
the opposite	




Next:	

The Scale of the Universe	



