
Distances in Cosmology 



The Basis of Cosmological Tests	
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All cosmological tests essentially consist of comparing 
some measure of (relative) distance (or look-back time) 
to redshift.  Absolute distance scaling is given by the H0.	





Distances in Cosmology	


A convenient unit is the Hubble distance,	



DH = c / H0 = 4.283 h70
-1 Gpc = 1.322Î1028 h70

-1 cm	


and the corresponding Hubble time,	



tH = 1 / H0 = 13.98 h70
-1 Gyr = 4.409Î1017 h70

-1 s	



At low z’s, distance D ≈ z DH .  But more generally, 
the comoving distance to a redshift z is:	



where	





Distances in Cosmology	


But the quantity really useful in computing the various 
physical quantities of interest is the “transverse 
comoving distance”, where we account for the curvature:	



where Ωk is defined by:	





Distances in Cosmology	



To simplify, let’s put ourselves at the origin, then the light 
path is purely radial, 
and dθ and dφ = 0, so: 

Taking the square root of both 
sides and integrating: 

We can derive this for using the RW metric: 



Distances in Cosmology	


In general this is non-analytic.  In a special case of a Λ = 0 
Universe, we have q0 = Ω0 / 2, and: 

For a non-zero Λ universe:  

Assuming Ωk<0, if Ωk >0 then the sinh becomes a sin and 
if Ωk=0 then the sinh and the Ωk drop out and all that’s 
left is the integral, which has to be evaluated numerically.  
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Luminosity Distance	


In relativistic cosmologies, observed flux (bolometric, or 
in a finite bandpass) is:	



f = L / [ (4π D2) (1+z)2 ] 	



One factor of (1+z) is due to the energy loss of photons, 
and one is due to the time dialation of the photon rate.	



A luminosity distance is defined as DL = D (1+z), so that 
f = L / (4π DL

2).	



For a specific flux, however,	



(since Angstroms are 
also stretched by 1+z)	





Luminosity 
Distance	



Ωm = 1,	


ΩΛ = 0	



Ωm = 0.05,	


ΩΛ = 0	



Ωm = 0.2,	
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Angular Diameter Distance	


Angular diameter of an object with a fixed comoving size 
X is by definition	



θ = X / D	


However, an object with a fixed proper size X is (1+z) 
times larger than in the comoving coordinates, so its 
apparent angular diameter will be	



                                              θ = (1+z) X / D	



Thus, we define the angular diameter distance	


DA = D / (1+z) , so that the angular diameter of an object 
whose size is fixed in proper coordinates is θ = X / DA	
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Volume Element	



This is useful, e.g., when computing the source counts.	



Generally, it has to be evaluated numerically.	



The total volume out to some z, over the whole sky, is: 	
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Age and Lookback Time	


The time elapsed since some redshift z is:	



Generally it has to be integrated numerically, except in 
some special cases, such as Λ = 0.	



Integrating to infinity gives the age of the universe, and 
the difference of the two is the age at a given redshift.	
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Cosmological Tests: Expected Generic 
Behavior of Various Models	
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Models with a lower density and/or positive 
Λ expand faster, are thus larger, older today, 
have more volume and thus higher source 
counts, at a given z sources are further away 
and thus appear fainter and smaller	



Models with a 
higher density 
and lower Λ 
behave exactly 
the opposite	





Next:	


The Scale of the Universe	




