

Specific Models

Consider several simple models:

- k = 0, matter dominated, Einstein de Sitter
- k = 0, radiation dominated
- $k < 0, \rho = 0$, Milne Model
- $k < 0, \rho > 0$
- *k* > 0
- A dominated

k = 0, matter dominated Einstein de Sitter

k = 0, radiation dominated

Friedman Equation: with k = 0 $\left(\frac{\dot{a}}{a}\right)^2 = \frac{8}{3}\pi G\rho$ $\Rightarrow \left(\frac{\dot{a}}{a}\right)^2 = \frac{8}{3}\pi G\rho a^{-4}$

$$\Rightarrow \left(\frac{\dot{a}}{a}\right)^2 = \frac{8}{3}\pi G\rho_0 a^{-4}$$

$$\Rightarrow \dot{a} \propto a^{-1}$$

$$\Rightarrow \int a da \propto t$$

$$\Rightarrow a^2 \propto t$$

$$\Rightarrow a \propto t^{1/2}$$

Milne Cosmology

- Galaxies are created at one point in a flat spacetime
- Galaxies behave as massless test particles
 - then "trivially" get $v = H_0 d$ (faster particles move further)
- Special relativity holds
 - Lorentz contraction lets us have infinitely many galaxies (almost all right at the edge of our expanding bubble)
- No special locations
 - Milne was the first to state this "Cosmological Principle"

$k = < 0, \rho = 0$ Milne Model

Friedman Equation:

with
$$\rho = 0$$
 $\left(\frac{\dot{a}}{a}\right)^2 = -\frac{kc^2}{a^2}$
since $k < 0$ $\Rightarrow \left(\frac{\dot{a}}{a}\right)^2 \propto \frac{+1}{a^2}$

$$\Rightarrow \dot{a} = \text{const}$$

$$\Rightarrow a \propto \pm t$$

 $k < 0, \rho > 0$

Friedman Equation:

 $t \to \infty \ a \to \infty, a^{-1} \to 0$

either matter or radiation dominated models tend to Milne model $\Rightarrow a \propto \pm t$

Matter Dominated Model

Positive Curvature Model: k = +1

Friedman Equation:

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8}{3}\pi G\rho - \frac{kc^2}{a^2} \quad \Longrightarrow \quad \dot{a}^2 = \frac{8}{3}\pi G\rho a^2 - c^2$$

if $\rho \propto a^{-3}$ or $\rho \propto a^{-4}$ then $\rho a^2 \propto a^{-n}$ (n = 1,2) decreases

at some point $\dot{a}^2 = 0$ The acceleration equation is:

$$\frac{\ddot{a}}{a} = -\frac{4}{3}\pi G\left(\rho + 3\frac{P}{c^2}\right)$$

And since all other quantities are positive, $\ddot{a} < 0$

Therefore, a collapse is inevitable

Cosmological Constant (A) Dominated

Friedman Equation: (.

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8}{3}\pi G\rho_{\Lambda} - \frac{kc^2}{a^2}$$

Which can be written as: $\dot{a}^2 = C_0 \rho a^2 - kc^2$

Assuming that *a* is allowed to grow, then eventually $C_0 a^2$ dominates over $-kc^2$ no matter what value of *k* If $\rho_{\Lambda} > 0$ then $\dot{a} > 0$

(Note that if $\rho_{\Lambda} < 0$ things get more complicated)

Models With Both Matter & Radiation

Radiation Domination

now

Harder to solve for $\rho(t)$

However, to a good approximation, we can assume that k = 0 and either radiation or matter dominate

Matter Domination 0 γ-dom m-dom log $a(t) \propto t^{1/2} \propto t^{2/3}$ $\rho_{\rm m} \propto a^{-3} \propto t^{-3/2} \propto t^{-2}$ $\rho_{\gamma} \propto a^{-4} \propto t^{-2} \propto t^{-8/3}$ $\log t$ Generally, $\frac{8\pi G\rho}{3} = H_0^2 \left(\Omega_{\Lambda,0} + \Omega_{m,0} a^{-3} + \Omega_{\gamma,0} a^{-4} \right)$

What is Dominant When?

Matter dominated (w = 0): $\rho \sim R^{-3}$ Radiation dominated (w = 1/3): $\rho \sim R^{-4}$ Dark energy ($w \sim -1$): $\rho \sim constant$

- Radiation density decreases the fastest with time
 - Must increase fastest on going back in time
 - Radiation must dominate early in the Universe
- Dark energy with $w \sim -1$ dominates last; it is the dominant component now, and in the (infinite?) future

Dynamics of the Universe

$$R(t) \sim t^{2/[3(w+1)]}$$

- Matter dominated (w = 0): $R \sim t^{2/3}$
 - Decelerating
- Radiation dominated (w = 1/3): $R \sim t^{1/2}$
 - Decelerating
- Cosmological constant (w = -1): $R \sim e^{\lambda t}$ (special)
 - Accelerating
- Where is the transition?
 - w > -1/3 decelerating
 - w < -1/3 accelerating

Fig. 10.— Scale factor vs. time for 5 different models: from top to bottom having $(\Omega_{m\circ}, \Omega_{v\circ}) = (0, 1)$ in blue, (0.25, 0.75) in magenta, (0, 0) in green, (1, 0) in black and (2, 0) in red. All have $H_{\circ} = 65$.

Next: Distances in Cosmology