

Cosmological models are typically defined through several handy key parameters:

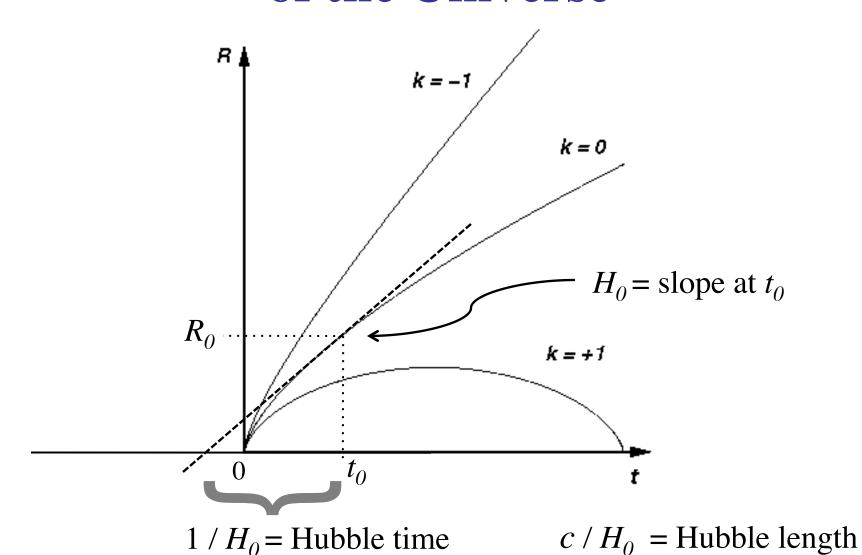
1. The Hubble Parameter

The **Hubble parameter** is the normalized rate of expansion:

$$H \equiv \frac{\dot{R}}{R}$$

Note that the Hubble parameter is not a constant! The Hubble constant is the Hubble parameter measured today -- we denote its value by H_0 . Current estimates are in the range of $H_0 = 65-75$ km/s/Mpc -- we will discuss these efforts in more detail later.

Hubble Constant Defines the Scale of the Universe



2. The Matter Density Parameter.

Rewriting the Friedmann Eqn. using the Hubble parameter, and for now set $\Delta = 0$:

$$H^2 - \frac{8}{3}\pi G\rho = -\frac{kc^2}{R}$$

The Universe is flat if k=0, or if it has a critical density of

$$\rho_{crit} = \frac{3H^2}{8\pi G}$$

We define the matter density parameter as

$$\Omega_{M} = rac{
ho}{
ho_{crit}}$$

3. The "dark energy" density parameter

We can express a similar density parameter for lambda again by using the Friedmann equation and setting $P_{11} = 0$. We then get

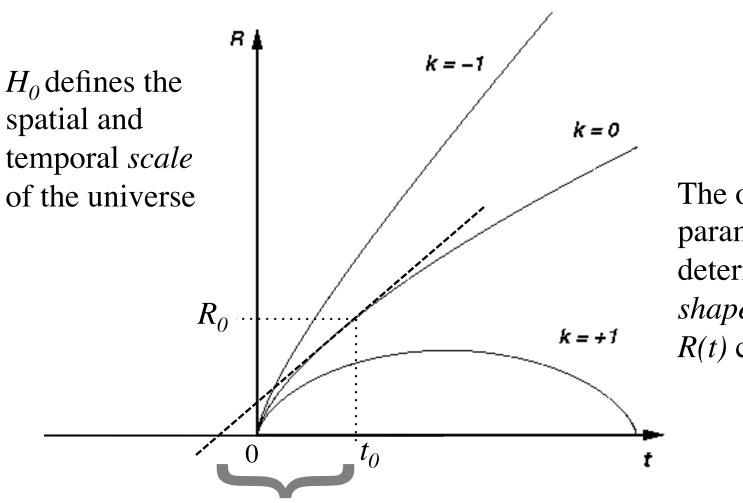
$$\Omega_{\Lambda} = \frac{\Lambda c^2}{3H^2}$$

The total density parameter is then

$$\Omega = \Omega_M + \Omega_L$$

4. The deceleration parameter

$$q = -R\ddot{R}/\dot{R} = \frac{\Omega_M}{2} - \Omega_L$$



The other parameters (Ω_x) determine the *shape* of the R(t) curves

$$1/H_0$$
 = Hubble time

$$c/H_0$$
 = Hubble length

A few notes:

The Hubble parameter is usually called the Hubble constant (even though it changes in time!) and it is often written as:

$$h = H_0 / (100 \text{ km s}^{-1} \text{ Mpc}^{-1}), \text{ or } h_{70} = H_0 / (70 \text{ km s}^{-1} \text{ Mpc}^{-1})$$

The current physical value of the critical density is

$$\rho_{0,\text{crit}} = 0.921 \times 10^{-29} h_{70}^{2} \text{ g cm}^{-3}$$

The density parameter(s) can be written as:

$$\Omega_{\rm m} + \Omega_{\rm k} + \Omega_{\Lambda} = 1$$

where Ω_k is a fictitious "curvature density"

Recall the definitions of the cosmological parameters:

$$\Omega_M + \Omega_\Lambda + \Omega_k = 1$$

If
$$\Omega_k = 0$$
:

$$q_0 = \frac{1}{2}\Omega_M - \Omega_\Lambda$$

$$\Omega_M = \rho_0/\rho_c = \frac{8\pi G}{3H_0}\rho_0$$

$$\Omega_{\Lambda} = \frac{\Lambda}{3H_0^2}$$

$$\Omega_k = -\frac{k}{R_0^2 H_0^2}$$

The Friedmann Eqn. is now:

$$\left(\frac{\dot{R}}{\dot{R}_0}\right)^2 = \Omega_M \left(\frac{R_0}{R}\right) + \Omega_k + \Omega_\Lambda \left(\frac{R}{R_0}\right)^2$$

