
Computer Architecture
ELE 475 / COS 475

Slide Deck 8: Branch Prediction

David Wentzlaff

Department of Electrical Engineering

Princeton University

1

Agenda

• Branch Cost Motivation

• Branch Prediction

– Outcome

• Static

• Dynamic

– Target Address

2

Agenda

• Branch Cost Motivation

• Branch Prediction

– Outcome

• Static

• Dynamic

– Target Address

3

Longer Frontends Means More Control
Flow Penalty

F I
X0
L0 L1 W

Y0 Y1 Y2 Y3

D
SB ARF

S0

C
ROB

FSB

I
Q

RT

Penalty includes
instructions in IQ

4

Longer Pipeline Frontends Amplify
Branch Cost

Pentium 3: 10 cycle branch penalty

Pentium 4: 20 cycle branch penalty

5
Image from: The Microarchitecture of the Pentium 4 Processor by Glenn Hinton et al.
Appeared in Intel Technology Journal Q1, 2001. Image courtesy of Intel

Dual Issue and Branch Cost

PC
addr

rdata

Instr.
Cache

RF
Read

IR0

IR1

ALU

A

ALU

B
addr

rdata

Data
Cache

RF
Read

Branch Cond.

6

Superscalars Multiply Branch Cost
BEQZ F D I A0 A1 W
OpA F D I B0 - -
OpB F D I - - -
OpC F D I - - -
OpD F D - - - -
OpE F D - - - -
OpF F - - - - -
OpG F - - - - -
OpH F D I A0 A1 W
OpI F D I B0 B1 W

 7

Dual-issue
Processor
has twice
the mispredict
penalty

How much work is lost if pipeline doesn’t follow correct instruction flow?

~pipeline width x branch penalty

Agenda

• Branch Cost Motivation

• Branch Prediction

– Outcome

• Static

• Dynamic

– Target Address

8

Branch Prediction

• Essential in modern processors to mitigate
branch delay latencies

Two types of Prediction

1. Predict Branch Outcome

2. Predict Branch/Jump Address

9

Where is the Branch Information
Known?

F D X M W I

Know target address for branches, J, JAL

Know branch outcome
Know target address for JR, JALR

10

Agenda

• Branch Cost Motivation

• Branch Prediction

– Outcome

• Static

• Dynamic

– Target Address

11

Branch Delay Slots
(expose control hazard to software)

• Change the ISA semantics so that the instruction
that follows a jump or branch is always executed
– gives compiler the flexibility to put in a useful instruction where normally

a pipeline bubble would have resulted.

12

I1 096 ADD
I2 100 BEQZ r1 +200
I3 104 ADD
I4 108 ADD
I5 304 ADD

Delay slot instructions executed
regardless of branch outcome

Static Branch Prediction

13

Overall probability a branch is taken is ~60-70% but:

BEZ

BEZ
backward
90%

forward
50%

Static Software Branch Prediction

• Extend ISA to enable compiler to tell microarchitecture if branch is
likely to be taken or not (Can be up to 80% accurate)

BR.T F D X M W
OpA F - - - -
Targ F D X M W
BR.NT F D X M W
OpB F D X M W
OpC F D X M W

What if hint is wrong?
BR.T F D X M W
OpA F - - - -
Targ F - - - -
OpA F D X M W

14

Static Hardware Branch Prediction

1. Always Predict Not-Taken
– What we have been assuming
– Simple to implement
– Know fall-through PC in Fetch
– Poor Accuracy, especially on backward branches

2. Always Predict Taken
– Difficult to implement because don’t know target until

Decode
– Poor accuracy on if-then-else

3. Backward Branch Taken, Forward Branch Not Taken
– Better Accuracy
– Difficult to implement because don’t know target until

Decode

15

Agenda

• Branch Cost Motivation

• Branch Prediction

– Outcome

• Static

• Dynamic

– Target Address

16

Dynamic Hardware Branch Prediction:
Exploiting Temporal Correlation

• Exploit structure in program: The way a
branch resolves may be a good indicator of
the way it will resolve the next time it
executes (Temporal Correlation)

1-bit Saturating Counter

Predict
T

Predict
NT

NT

NT

T

T

17

1-bit Saturating Counter

Iteration Prediction Actual Mispredict?

1 NT T Y

2 T T

3 T T

4 T NT Y

…

1 NT T Y

2 T T

3 T T

4 T NT Y

Predict
T

Predict
NT

NT

NT

T

T

For Backward branch in loop
• Assume 4 Iterations
• Assume is executed multiple

times

Always 2 Mispredicts

18

2-bit Saturating Counter

Iteration Prediction Actual Mispredict? State

1 NT T Y Strong NT

2 NT T Y Weak NT

3 T T Weak T

4 T NT Y Strong T

…

1 T T Weak T

2 T T Strong T

3 T T Strong T

4 T NT Y Strong T

Predict
T

Predict
NT

NT

NT

T

T

Only 1
Mispredict

Predict
NT

Predict
T

NT

T

NT

T

Strong
Taken

Weak
Taken

Weak
Not Taken

Strong
Not Taken

19

Other 2-bit FSM Branch Predictors

Predict
T

Predict
NT

NT

NT

NT

T

Predict
NT

Predict
T

T

T

T

Strong
Taken

Weak
Taken

Weak
Not Taken

Strong
Not Taken

Jump directly to
strong from weak

20

Branch History Table (BHT)

21
4K-entry BHT, 2 bits/entry, ~80-90% correct predictions

0 0 Fetch PC

Branch? Target PC

+

I-Cache

Opcode offset

Instruction

k

BHT Index

2k-entry
BHT,
2 bits/entry

Taken/¬Taken?

Exploiting Spatial Correlation
Yeh and Patt, 1992

22

Branch History Register, BHR, records the direction
of the last N branches executed by the processor
(Shift Register)

if (x[i] < 7) then

 y += 1;

if (x[i] < 5) then

 c -= 4;

If first condition false, second condition also false

BHR
Branch
Outcome
(T/NT)

Pattern History Table (PHT)

BHR
Branch
Outcome
(T/NT)

Indexes
PHT

PHT

FSM
Output
Logic

Prediction (T/NT) 23

Two-Level Branch Predictor

BHR
Branch
Outcome
(T/NT)

Indexes
PHT

PHT 0

FSM
Output
Logic

Prediction (T/NT)

PHT 2^(k-1)

…

PC

k

24

Generalized Two-Level Branch
Predictor

BHR
Branch
Outcome
(T/NT) Indexes

PHT

PHT 0

FSM
Output
Logic

Prediction (T/NT)

PHT 2^(k-1)

…

PC

k

m

For non-trivial m and k, > 97% accuracy 25

Tournament Predictors
(ex: Alpha 21264)

• Choice predictor learns whether best to use local or global branch
history in predicting next branch

• Global history is speculatively updated but restored on mispredict
• Claim 90-100% success on range of applications

Global
Predictor

Local
Predictor

Choice
Predictor

PC

Prediction (T/NT)

26

Agenda

• Branch Cost Motivation

• Branch Prediction

– Outcome

• Static

• Dynamic

– Target Address

27

Predicting Target Address

Even with best possible prediction of branch
outcome, still have to wait for branch target address
to be determined

F D X M W I

Know target address for branches, J, JAL

Know target address for JR, JALR

28

Branch Target Buffer (BTB)

Valid PC Predicted
Target

BP State
PC

FSM
Output
Logic

Prediction (T/NT)

New PC if
hit and
predicted
taken

==

Hit

Put BTB in Fetch Stage in parallel with PC+4 Speculation logic
29

BTB is only for Control Instructions

• BTB contains useful information for
branch and jump instructions only
– Do not update it for other instructions

• For all other instructions the next PC is
PC+4 !

How to achieve this effect without
decoding the instruction?

When do we update BTB information?

30

Uses of Jump Register (JR)

• Switch statements (jump to address of matching case)

• Dynamic function call (jump to run-time function address)

• Subroutine returns (jump to return address)

31

How well does BTB work for each of these cases?

BTB works well if same case used repeatedly

BTB works well if same function usually called, (e.g., in
C++ programming, when objects have same type in
virtual function call)

BTB works well if usually return to the same place

 Often one function called from many distinct call sites!

32

Subroutine Return Stack

Small structure to accelerate JR for subroutine
returns, typically much more accurate than BTBs.

&fb()

&fc()

Push call address when
function call executed

Pop return address
when subroutine
return decoded

fa() { fb(); }

fb() { fc(); }

fc() { fd(); }

&fd()
k entries
(typically k=8-16)

Acknowledgements

• These slides contain material developed and copyright by:
– Arvind (MIT)
– Krste Asanovic (MIT/UCB)
– Joel Emer (Intel/MIT)
– James Hoe (CMU)
– John Kubiatowicz (UCB)
– David Patterson (UCB)
– Christopher Batten (Cornell)

• MIT material derived from course 6.823
• UCB material derived from course CS252 & CS152
• Cornell material derived from course ECE 4750

33

Copyright © 2013 David Wentzlaff

34

