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Longer Frontends Means More Control 
Flow Penalty 
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Longer Pipeline Frontends Amplify 
Branch Cost 

Pentium 3: 10 cycle branch penalty 

Pentium 4: 20 cycle branch penalty 
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Image from: The Microarchitecture of the Pentium 4 Processor by Glenn Hinton et al. 
Appeared in Intel Technology Journal Q1, 2001.  Image courtesy of Intel 
 



Dual Issue and Branch Cost 
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Superscalars Multiply Branch Cost 
BEQZ  F  D  I  A0 A1 W 
OpA   F  D  I  B0 -  - 
OpB      F  D  I  -  -  - 
OpC      F  D  I  -  -  - 
OpD         F  D  -  -  -  - 
OpE         F  D  -  -  -  - 
OpF            F  -  -  -  -  - 
OpG            F  -  -  -  -  - 
OpH               F  D  I  A0 A1 W 
OpI               F  D  I  B0 B1 W 
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Dual-issue 
Processor 
has twice 
the mispredict 
penalty 

How much work is lost if pipeline doesn’t follow correct instruction flow? 

~pipeline width x branch penalty 
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Branch Prediction 

• Essential in modern processors to mitigate 
branch delay latencies 

 

Two types of Prediction 

1. Predict Branch Outcome 

2. Predict Branch/Jump Address 
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Where is the Branch Information 
Known? 

 

F D X M W I 

Know target address for branches, J, JAL 

Know branch outcome 
Know target address for JR, JALR 
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Branch Delay Slots 
(expose control hazard to software) 

• Change the ISA semantics so that the instruction 
that follows a jump or branch is always executed 
– gives compiler the flexibility to put in a useful instruction where normally 

a pipeline bubble would have resulted. 
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I1 096 ADD  
I2 100 BEQZ r1 +200 
I3 104 ADD 
I4 108 ADD 
I5 304 ADD 

Delay slot instructions executed 
regardless of branch outcome 



Static Branch Prediction 
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Overall probability a branch is taken is ~60-70% but: 

BEZ 

BEZ 
backward 
90% 

forward 
50% 



Static Software Branch Prediction 

• Extend ISA to enable compiler to tell microarchitecture if branch is 
likely to be taken or not (Can be up to 80% accurate) 

BR.T F D X M W 
OpA    F - - - - 
Targ     F D X M W 
BR.NT      F D X M W 
OpB          F D X M W 
OpC            F D X M W 
 
What if hint is wrong? 
BR.T F D X M W 
OpA    F - - - - 
Targ     F - - - - 
OpA        F D X M W 
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Static Hardware Branch Prediction 

1. Always Predict Not-Taken 
– What we have been assuming 
– Simple to implement 
– Know fall-through PC in Fetch 
– Poor Accuracy, especially on backward branches 

2. Always Predict Taken 
– Difficult to implement because don’t know target until 

Decode 
– Poor accuracy on if-then-else 

3. Backward Branch Taken, Forward Branch Not Taken 
– Better Accuracy 
– Difficult to implement because don’t know target until 

Decode 
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Dynamic Hardware Branch Prediction: 
Exploiting Temporal Correlation 

• Exploit structure in program: The way a 
branch resolves may be a good indicator of 
the way it will resolve the next time it 
executes (Temporal Correlation) 
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1-bit Saturating Counter 

Iteration Prediction Actual Mispredict? 

1 NT T Y 

2 T T 

3 T T 

4 T NT Y 

… 

1 NT T Y 

2 T T 

3 T T 

4 T NT Y 

Predict 
T 

Predict 
NT 

NT 

NT 

T 

T 

For Backward branch in loop 
• Assume 4 Iterations 
• Assume is executed multiple 

times 
 

Always 2 Mispredicts 
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2-bit Saturating Counter 

Iteration Prediction Actual Mispredict? State 

1 NT T Y Strong NT 

2 NT T Y Weak NT 

3 T T Weak T 

4 T NT Y Strong T 

… 

1 T T Weak T 
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3 T T Strong T 

4 T NT Y Strong T 
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Other 2-bit FSM Branch Predictors 
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Branch History Table (BHT) 

21 
4K-entry BHT, 2 bits/entry, ~80-90% correct predictions 

0 0 Fetch PC 

Branch? Target PC 
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I-Cache 

Opcode offset 

Instruction 
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BHT Index 

2k-entry 
BHT, 
2 bits/entry 

Taken/¬Taken? 



Exploiting Spatial Correlation 
Yeh and Patt, 1992 
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Branch History Register, BHR, records the direction 
of the last N branches executed by the processor 
(Shift Register) 
 

 

if (x[i] < 7) then 

 y += 1; 

if (x[i] < 5) then 

 c -= 4; 

If first condition false, second condition also false 

BHR 
Branch 
Outcome 
(T/NT) 



Pattern History Table (PHT) 
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Two-Level Branch Predictor 
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Generalized Two-Level Branch 
Predictor 
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For non-trivial m and k, > 97% accuracy 25 



Tournament Predictors  
(ex: Alpha 21264) 

• Choice predictor learns whether best to use local or global branch 
history in predicting next branch 

• Global history is speculatively updated but restored on mispredict 
• Claim 90-100% success on range of applications 

Global 
Predictor 
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Predictor 

Choice 
Predictor 

PC 

Prediction (T/NT) 

26 



Agenda 

• Branch Cost Motivation 

• Branch Prediction  

– Outcome 

• Static 

• Dynamic 

– Target Address 

27 



Predicting Target Address 

Even with best possible prediction of branch 
outcome, still have to wait for branch target address 
to be determined 

F D X M W I 

Know target address for branches, J, JAL 

Know target address for JR, JALR 
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Branch Target Buffer (BTB) 

Valid PC Predicted 
Target 

BP State 
PC 

FSM 
Output 
Logic 

Prediction (T/NT) 

New PC if 
hit and 
predicted 
taken 

== 

Hit 

Put BTB in Fetch Stage in parallel with PC+4 Speculation logic 
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BTB is only for Control Instructions 

• BTB contains useful information for 
branch and jump instructions only 
– Do not update it for other instructions 
 

• For all other instructions the next PC is 
PC+4 ! 
 

How to achieve this effect without 
decoding the instruction? 

 
When do we update BTB information? 
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Uses of Jump Register (JR) 

• Switch statements (jump to address of matching case) 

 

 

• Dynamic function call (jump to run-time function address) 

 

 

 

• Subroutine returns (jump to return address) 
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How well does BTB work for each of these cases? 

BTB works well if same case used repeatedly 

BTB works well if same function usually called, (e.g., in 
C++ programming, when objects have same type in 
virtual function call) 

BTB works well if usually return to the same place 

  Often one function called from many distinct call sites! 
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Subroutine Return Stack 

Small structure to accelerate JR for subroutine 
returns, typically much more accurate than BTBs. 

&fb() 

&fc() 

Push call address when 
function call executed 

Pop return address 
when subroutine 
return decoded  

fa() { fb(); } 

fb() { fc(); } 

fc() { fd(); } 

&fd() 
k entries 
(typically k=8-16) 
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