

ELE 475 PS#5 Solution
Problem # 2:

One of the interesting things about compare and exchange is that atomically operates on a single
memory address, but does not have any place to store a lock variable because the locking is implicit.
Hence, if you want to build compare and exchange out of test and set, you will need another address.
Therefore below, we create a struct which contains both a lock and the value.

typedef struct cae_t

{

int value;

int lock; // 1 denotes locked
} cae_t;

// prototype of test _and_set
// old value returned
int test _and_set(int * mem);

// returns 1 if compare success
// returns @ if compare failure
int compare_and_exchange(cae t * mem, int compare value, int swap value)
{
int ret_value = 0;
// grab lock
while(test_and set(&(mem->lock)){}
if(compare_value == mem->value)
{
mem->value = swap_value;
ret _value = 1;

}
else
{
ret_value = 0;
}

// release lock
mem->lock = 0;

ELE 475 PS#5 Solution
Problem # 3:

We first investigate the final value for ‘i’. Because thread T3 only has one memory operation, that
memory operation is either ordered before or after the store to ‘i’ in thread T1, therefore "i" is either 30
or 100 and these outcomes are valid with all outcomes of ‘j'.

Now we investigate valid values for ‘j'.

Case 1:

T2 LW R6, ©(j) j = 10

T2 SW R7, ©(j) j = 109
T1 LW R2, ©(j) j = 109
T1 SW R2, 0(j) j = 109
Case 2:

T2 LW R6, ©(j) j = 10

T1 LW R2, 0(j) j = 1@

T2 SW R7, ©(j) j = 109
Tl SW R2, ©(j) j = 10

Case 2:

T2 LW R6, 0(j) j = 10

Tl LW R2, ©(j) j = 10

Tl SW R2, ©(j) j = 10

T2 SW R7, 0(j) j = 109
Case 3:

T1 LW R2, ©(j) j = 10

T2 LW R6, ©(j) j = 10

T2 SW R7, 0(j) j = 109
T1 SW R2, 0(j) j = 1e

Case 4:

T1 LW R2, ©(j) j = 10

T2 LW R6, ©(j) j = 10

T1 SW R2, ©(j) j = 10

T2 SW R7, ©(j) j = 109

Case 5:

T1 LW R2, 0(3) j = 10
T1 SW R2, 0(j) j = 10
T2 LW R6, O(j) j = 10
T2 SW R7, ©(3) j = 109

Therefore, valid sequentially consistent outcomes are {i, j} = {30, 10}, {390,
109}, {100, 10}, and {100, 109}

ELE 475 PS#5 Solution
Problem # 4:

// Assumes that the input and output arrays are created

// outside of the function. Note that the output lock array is assumed to be
// initialized to 1 (this allows for a mutex)

#include <thread.h>

#include <stdlib.h>

#define MAX_VALUE 1023

#define NUM_THREADS 100

#define INPUT_ARRAY_ELEMENTS (1024*1024*512) // 512 million entries

struct thread_data{
int input_array_size;
int * input_array;
int * output_array;
int * output_lock_array;

}s
struct thread _data thread data_array[NUM_THREADS];

void function(int input_array_size, int * input_array, int * output_array,
int * output_lock_array)

{
int counter;
for(counter = @; counter < input_array_size; counter++)
{
assert(input_array[counter] <= MAX VALUE);
assert(input_array[counter] >= 0);
P(&output lock array[counter]);
output_array[input_array[counter]]++;
V(&output_lock_array[counter]);
}
}

void function_starter(void * thread_args)
{
struct thread_data * temp_data;
temp_data = (struct thread_data *) thread_args;
function(temp_data->input_array_size, temp_data->input_array, temp_ data-
>output_array, temp_data->output lock array);
pthread_exit();

int main()
{
int counter;
pthread_t threads[NUM_THREADS];
int * input_array;
input_array = malloc(INPUT_ARRAY_ELEMENTS*sizeof(int));
// this would be a good place to read a file into input_array
int * output_array = malloc((MAX_VALUE + 1) * sizeof(int));
int * output_lock array = malloc((MAX VALUE + 1) * sizeof(int));
for(counter = @; counter <= MAX_VALUE; counter++);

{
output_array = 0;
output_lock_array = 1;
}
for(counter = @; counter < 100; counter++)
{

thread_data_array[counter].input_array_size = INPUT_ARRAY_ELEMENTS /
NUM_THREADS;
thread_data_array[counter].input_array =
&input_array[INPUT_ARRAY_ELEMENTS / NUM_THREADS * counter];
thread_data_array[counter].output_array = output_array;
thread_data_array[counter].output _lock array = output lock array;
pthread create(&threads[counter], NULL, function_starter, (void
*)thread_data_array[counter]);

}
for(counter = @; counter < 100; counter++)
{

void * dummy;

pthread join(threads[counter], &dummy);
}

No this program will not see 100x performance speedup for two reasons. First, we require more work
to be done in setting and clearing the semaphores. Also, we have used a very fine grain locking scheme
which minimized the probability that two threads will use the same location in the output array
simultaneously, but it is still possible. When there is contention, a thread will be stalled and
performance will decrease. Finally, the coherence protocol along with true and false sharing will cause
cache lines to move between the caches of the processors. When a processor is waiting for a cache line
to be transferred, these cycles are wasted thereby decreasing performance.

ELE 475 PS5
MSI Protocol
P1 Cache
Time Line Address
1 0
2 0
3 0
4 0
5 0
6 O
7 0
8 4096
9 4096
10
11

State
Shared

Shared

Shared

Shared

Shared

Shared

Modified

Shared

Modified

Problem 5

P2 Cache
Line Address
All lines Invalid

64
64

64

64
4096
64
4096

State

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Modified

Shared
Modified

Solution

P3 Cache
Line Address
All lines Invalid

All lines Invalid

0
64
0
64
0
64
64

64

64

64

64
0

State

Shared

Shared
Modified
Shared
Modified
Shared
Shared
Shared

Shared

Shared

Shared

Shared
Modified

Notes

Line at address 0 is marked invalid in P2 and P3 cache.

Address 4100 (line starts at 4096) aliases with line 0

Line at address 4096 is invalidated in P1 cache

Line at address 4096 and address 0 can exist
simultaneously in two different caches.

MESI Protocol

Time

10

11

P1 Cache
Line Address
0

4096

4096

State
Exclusive

Shared

Shared

Shared

Shared

Shared

Modified

Exclusive

Modified

P2 Cache
Line Address
All lines Invalid

64
64

64
64
64
4096

64
4096

State

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Modified

Shared
Modified

P3 Cache
Line Address
All lines Invalid

All lines Invalid

0
64
0
64
0
64
64

64

64

64

64
0

State

Shared

Shared
Modified
Shared
Modified
Shared
Shared
Shared

Shared

Shared

Shared

Shared
Modified

Notes

Line at address 0 is marked invalid in P2 and P3 cache.

Address 4100 (line starts at 4096) aliases with line 0

Line at address 4096 is invalidated in P1 cache

Line at address 4096 and address 0 can exist
simultaneously in two different caches.

ELE 475 PS#5 Solution
Problem # 6:

We assume that each link is bidirectional even though most mesh networks are made of two sets of
unidirectional links. For a 4-ary 3-cube, there are 16 links across the bisection.

16 links * 32bits/link * 800*10/6 cycles/second = 4.096 Thps.

Each stage of an omega network has the same number of links, but if we examine one stage where a
crossover occurs, we see that in a pipelined manner that only 4 links cross the bisection cut of the
machine. We assume that each switch is pipelined. Therefore on a given cycle, only 4 links cross the
minimum bisection.

4 links * 64bits/link * 1.2*10”9 cycles/second = 307.2Gbps.

ELE 475 PS5 Problem 9

ESU Directory Protocol

Solution

Note: We assume that writeback of data notifies the directory, but invalidation due to conflict misses on shared data does not.

P1 Cache P2 Cache
Time Line Address State Line Address
1 0 Shared All lines Invalid
2 0 Shared 0
3 0 Shared 0
4 0 Shared 0
5 0 Shared 0
6 O Shared 0
64
7 0 Modified 64
8 4096 Shared 64
9 4096 Modified 64
10 64
4096
11 64
4096

State

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Modified

Shared
Modified

P3 Cache
Line Address
All lines Invalid

All lines Invalid

64

64

64

64

64

64

64

64
0

State

Shared

Shared

Modified

Shared
Modified

Shared

Shared

Shared

Shared

Shared

Shared

Shared
Modified

Directory
Line Address State
0 Shared

All other lines Uncached

0 Shared
All other lines Uncached

0 Shared
All other lines Uncached

0 Shared
64 Exclusive
All other lines Uncached

0 Shared
64 Exclusive
All other lines Uncached

0 Shared
64 Shared
All other lines Uncached

0 Exclusive
64 Shared
All other lines Uncached

0 Invalid
64 Shared
4096 Shared

0 Invalid
64 Shared
4096 Exclusive
0 Invalid
64 Shared
4096 Exclusive
0 Exclusive
64 Shared
4096 Exclusive

Share List/Owner

{P1}

{P1, P2}

{P1, P2, P3}

{P1, P2, P3}
{P3}

{P1,P2,P3}
{P3}

{P1, P2, P3}
{P2, P3}

{P1}
{P2, P3}

{P2, P3}
{P1}

{P2, P3}
{P1}

{P2, P3}
{P2}
{P3}
{P2, P3}
{P2}

Writeback
updates
directory

10

From Hennessy and Patterson
2011, Elsevier Inc. All rights

Ed. 5 Image Copyright
Reserved.

©

wentzlaf
Typewritten Text
From Hennessy and Patterson Ed. 5 Image Copyright © 2011, Elsevier Inc. All rights Reserved.

	PS5_1
	PS5_2
	PS5_3
	PS5_4
	PS5_5
	PS5_6
	PS5_7
	PS5_8
	PS5_9
	PS5_10

