ELE 475 PS3 Problem 1 Solution
Simple Unrolling Preparation

X Y Z M LSO LS1
loop: LW R6, O(R1)

ADD R4, R5, RO MUL RS, R4, R16

SUBIR3,R3,1 MUL R9, R5, R17

MUL R10, R6, R18
ADDIR1, R1, 4

ADD R5, R6, RO

ADD RS, R8, R9
ADD RS, R8, R10

ADDIR2,R2, 4 BNEZ R3, loop SW RS, 0(R2)

Unrolled three times with some code motion

X z M LSO LS1

LW R6, O(R1)

MUL R10, R6, R18

Y
loop: MUL RS, R4, R16
SUBIR3, R3, 3 MUL RS, R5, R17

ADD R8, R8, R9
ADDI R1, R1, 12 ADD RS, R8, R10
ADDI R2, R2, 12 BNEZ R3, loop LW R6, 0(R1) SW RS, 0(R2)
Final Code
X Y YA M LSO LS1
function:
prolog: ADD RS5, RO, RO ADDI R16, RO, 0x456 ADDI R17, RO, 0x789

ADD R6, RO, RO ADDI R18, RO, 0x901

ADD R25, R5, RO

ADDIR1,R1, 8 SLTIR41,R3,3

ADDR26,R6,R0 BNZ R41, epilog LW R6, O(R1)

loop: MUL R8, R4, R16
SUBIR3, R3, 3 MUL R9, RS, R17
MUL R10, R6, R18
ADD R25, RS, RO
ADD R8, R8, R9
ADDI R1, R1, 12 ADD R8, R8, R10
ADDI R2, R2, 12 ADD R26, R6, RO BGTZ R3, loop LW R6, O(R1) SW RS, 8(R2)
epilog: BLEZ R3, ep_fix_0
SUBIR3, R3, 1
ADDI R2, R2, 4 BLEZ R3, ep_fix_1 SWR28,0(R2)
ADDI R2, R2, 4 Jep_end SWR38,0(R2)
ep_fix_0: ADD R4, R25, RO ADDRS,R26,R0 Jep_end
ep_fix .1 ADD R4, R26, RO ADD RS, R4, RO
ep_end: MUL R8, R4, R16

MULRS, R5, R17
MUL R10, R5, R16

ADD R8, R8, R9
ADDIR2,R2, 4 SW RS, 0(R2)
JRR31 SW R10, 0(R2)
High Order Functionality: FIR filter
Average multiples per cycle: 1

ELE 475 PS#3 Solution

Problem # 2:

R6, R8, and R5 are all read in the shadow of being updated thus get old value. After execution, R12 =7,
R13 =10, and R14 = 6.

{ADDI R6, RO, 6; ADDI R8, RO, 8; ADDI R5, RO, 5; LW R14, 8(R7);}
{LW R6, O(R7); LW R8, 4(R7); ADDI R12, R6, 1; ADDI R13, RS, 2;}
{ADD R14, R14, R5; ADDI R9, Re, 9; ADDI R10, Re, 10;}

{MUL R5, R8, R10;}

{MUL R7, R6, R9;}

{ADD R15, R16, R17;}

{SUB R19, R18, R22;}

{NOP}

{NOP}

{ADD R5, R7, R5;}

Note: With register renaming, a more compact schedule could be created

The LEQ model is more flexible because it is easier to implement precise interrupts. An instruction can
interrupt and the previous instructions can flow to the end of the pipeline and write the register file
without creating erroneous results when the interrupted instruction is re-executed.

ELE 475 PS#3 Solution
Problem # 3:

ADDI R6, RO, 1
ADDI R3, RO, 50
loop:

LW R8, @(R9)

ADDI R27, R24, 10
ADD R12, R15, R8
SUB R26, R24, R12
MOVZ R24, R27, R8
MOVN R24, R26, R8
SUBI R3, R3, 1
BNEZ R3, loop

Yes, it is beneficial to predicate. In the original code, the fall-through case took 4 cycles, plus an average
5 cycle mispredict penalty = 9 cycles. In the branch taken case, execution took 2 cycles plus a 5 cycle
mispredict penalty = 7 cycles. Each of these outcomes has a 50% probability; therefore the average
latency of the original code is 8 cycles. In the predicated case, the latency of the replaced instructions is
5 cycles.

ELE 475 PS3 Problem 4 Solution

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 7 Accuracy
Name Initial Outcome After Outcome After Outcome After Outcome After Outcome After Outcome After Outcome After
b O SNT T NT NT SNT T NT NT SNT T NT NT SNT T NT 0.429
b 1 SNT x SNT T NT x NT T T X T NT NT X NT 0

b3 SNT T NT T T T ST T ST T ST T ST NT T 0571

ELE 475 PS#3 Solution
Problem # 5:

We start with the solution to problem #4 ad see that there are 17 braches for one iteration of the outer
loop with a sequence of outcomes being: T, T, NT, T, T, T, T, NT, T, T, T, T, NT, NT, T, T, NT. We analyze
two of these functions p_4 executing next to each other and draw the content of the BHR for each

branch:
BHR
Branch in Program Old Recent
Order 10 9 8 7 6 5 4 3 2 1 0
New 0 T N T TTTNNTT N
1 T T NTTTTNNTT
2 T T T NTTTTNNT
3 T T T T NTTTT NN
4 N T T TTNTTTT N
5 T N T TTTNTTTT
6 T T NTTTTNTTT
7 N T T NTTTTNTT
8 T N T TNTTTTNT
9 T T NTTNTTTT N
10 N T T NTTNTTTT
11 N N TTNTTNTTT
12 T N NTTNTTNTT
13 T T NNTTNTTNT
14 T T T NNTTNTT N
15 T T TTNNTTNTT
Old 16 N T T TTNNTTNT

Looking at this table, we see that each branch has a unique BHR for each execution of the branch inside
of the loop. This means that they will each train up a unique PHT entry to have the prediction of the
previous time the branch was executed. The execution on the 50" execution matched the 51°
execution, therefore every branch in the 51°* execution will be predicted correctly. The final state of the
BHT will be from oldest to newest: T, NT, T, T, T, T, NT, NT, T, T, NT.

ELE 475 PS#3 Solution
Problem # 6:

BTBs are especially used at aggressive clock frequencies because at aggressive clock frequencies, it is
common to add extra stages to the front of the pipeline which makes the point at which an instruction is
decoded and known to be a branch relatively late. Also, the destination of the branch cannot be
computed until at minimum when the instruction is known to be a branch, therefore this adds stall
cycles for every branch until it is known that it is a branch. With a BTB, given the PC of the current
instruction, the fact that the instruction is a control flow instruction and the destination of that
instruction can be predicted simultaneously and not have to wait for the decode which may be several
cycles later.

The destination of a branch in a 5-stage pipeline is known in the decode stage of the pipeline.

A dedicated branch address adder does not help with JALR instructions as the jump address needs to
come from a register.

A BTB can aid in determining the target and that an instruction is a control flow instruction. Although it
can be to limited success because JR/JALR’s can jump to any address. But, for example, a leaf function is
called repeatedly from the same location, a BTB will do very well at predicting the return address. This is
particularly interesting for JALR’s which are typically used for calls to function pointers, which may or
may not be predicted well depending on consistency of the call location.

	PS3_1
	PS3_2
	PS3_3
	PS3_4
	PS3_5
	PS3_6

