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Overview of Interconnection
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Explicit Message Passing
(Programming)

Send(Destination, *Data)
Receive(&Data)
Receive(Source, &Data)

Unicast (one-to-one)
Multicast (one-to-multiple)
Broadcast (one-to-all)



Message Passing Interface (MPI)

#include <stdio.h>
#include <assert.h>
#include <mpi.h>
int main (int argc, char **argv) {
int myid, numprocs, X, y;
int tag = 475;
MPI Status status;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
assert(numprocs == 2);
if(myid==0) {
X = 475;
MPI_Send(&x, 1, MPI_INT, 1, tag, MPI_COMM_WORLD);
MPI_Recv(&y, 1, MPI_INT, 1, tag, MPI_COMM_WORLD, &status);
printf(“received number: ELE %d A\n”, y);
}
else {
MPI_Recv(&y, 1, MPI_INT, ©, tag, MPI_COMM_WORLD, &status);
y += 105;
MPI_Send(&y, 1, MPI_INT, ©, tag, MPI_COMM_WORLD);
}
MPI_Finalize();
exit(09);



Message Passing vs. Shared Memory

* Message Passing
— Memory is private
— Explicit send/receive to communicate
— Message contains data and synchronization
— Need to know Destination on generation of data (send)
— Easy for Producer-Consumer

* Shared Memory
— Memory is shared
— Implicit communication via loads and stores
— Implicit synchronization needed via Fences, Locks, and Flags

— No need to know Destination on generation of date (can store in
memory and user of data can pick up later)

— Easy for multiple threads accessing a shared table
— Needs Locks and critical sections to synchronize access



Shared Memory Tunneled over
Messaging

e Software

— Turn loads and stores into sends and receives

e Hardware

— Replace bus communications with messages sent
between cores and between cores and memory

Core Core Core Memory
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Messaging Tunneled over Shared
Memory

* Use software queues (FIFOs) with locks to
transmit data directly between cores by loads
and stores to memory

Producer

Rtail

Rhead R

RtaiI




Interconnect Design

Switching
Topology
Routing
Flow Control



Anatomy of a Message

M€5§Qje ’ l

74 \
/
v
SRC 3 \
————”_’——\‘\

PST .. L

—

T Badsd

( EN

C— ph k-

 Flit: flow control digit (Basic unit of flow control)
* Phit: physical transfer digit (Basic unit of data

transferred in one clock)
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Switching

Circuit Switched
Store and Forward
Cut-through
Wormhole



Topology
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Topology

Cwega Mk wiseik,

0\ ,

,_,

5’

ﬂ \—j il

P
—D
KLY ==
1t
1~

I
§




Topology




Topology

!(-ar)/ N‘Caég




Topology Parameters

Routing Distance: Number of links between
two points

Diameter: Maximum routing distance
between any two points

Average Distance

Minimum Bisection Bandwidth (Bisection
Bandwidth): The bandwidth of a minimal cut
though the network such that the network is
divided into two sets of nodes

Degree of a Router



Topology Parameters

D Mozt
Diameter: 2v/N -2 b

Bisection Bandwidth: 2V N
Degree of a Router: 5
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Topology Influenced by Packaging

Star,/ Fu ﬁy mwaﬂ,\/’ycwx/w * Wiring grows as
N-1
* Physically hard to

pack into 3-space
(pack in sphere?)
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Topology Influenced by Packaging

e Packing N dimensions in N-1
space leads to long wires

e Packing N dimensions in N-2
space leads to really long wires
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Network Performance

Bandwidth: The rate of data that can be transmitted
over the network (network link) in a given time

Latency: The time taken for a message to be sent from
sender to receiver

Bandwidth can affect latency

— Reduce congestion

— Messages take fewer Flits and Phits

Latency can affect Bandwidth

— Round trip communication can be limited by latency
— Round trip flow-control can be limited by latency
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Anatomy of Message Latency

T=T,.,.4+L/b

T, .aq: Head Phit Latency, includes t., t;, hop
count, and contention

Unloaded Latency:
To=Hg *ta+H. *t.+L/b



Anatomy of Message Latency
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Faster routers shorter messages -



Interconnection Network Performance

Latency (seconds)

I[deal Throughput ——

Zero-Load Latency

>

Offered Bandwidth (bits/second)

Flow Control
Routing

Topology

32



Routing

e Oblivious (routing path independent of state
of network)
— Deterministic
— Non-Deterministic

e Adaptive (routing path depends on state of
network)



Flow Control

* Local (Link or hop based) Flow Control
* End-to-end (Long distance)



Deadlock

* Deadlock can occur if cycle possible in “Waits-
for” graph
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Deadlock Example (Waits-for and
Holds analysis)
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Deadlock Avoidance vs. Deadlock
Recovery

e Deadlock Avoidance

— Protocol designed to never deadlock

* Deadlock Recovery

— Allow Deadlock to occur and then resolve
deadlock usually through use of more buffering
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