Computer Architecture ELE 475 / COS 475 Slide Deck 14: Interconnection Networks David Wentzlaff **Department of Electrical Engineering Princeton University**

Overview of Interconnection Networks: Buses

Overview of Interconnection Networks: Buses

Overview of Interconnection Networks: Buses

Overview of Interconnection Networks: Point-to-point / Switched

Overview of Interconnection Networks: Point-to-point / Switched

Explicit Message Passing (Programming)

- Send(Destination, *Data)
- Receive(&Data)
- Receive(Source, & Data)

- Unicast (one-to-one)
- Multicast (one-to-multiple)
- Broadcast (one-to-all)

Message Passing Interface (MPI)

```
#include <stdio.h>
#include <assert.h>
#include <mpi.h>
int main (int argc, char **argv) {
  int myid, numprocs, x, y;
  int tag = 475;
  MPI Status status;
  MPI Init(&argc,&argv);
  MPI Comm size(MPI COMM WORLD,&numprocs);
  MPI Comm rank(MPI COMM WORLD,&myid);
  assert(numprocs == 2);
  if(myid==0) {
    x = 475;
    MPI Send(&x, 1, MPI INT, 1, tag, MPI COMM WORLD);
    MPI Recv(&y, 1, MPI INT, 1, tag, MPI COMM WORLD, &status);
    printf("received number: ELE %d A\n", y);
  }
  else {
    MPI Recv(&y, 1, MPI INT, 0, tag, MPI COMM WORLD, &status);
    v += 105;
    MPI Send(&y, 1, MPI INT, 0, tag, MPI COMM WORLD);
  }
  MPI Finalize();
  exit(0);
}
```

Message Passing vs. Shared Memory

- Message Passing
 - Memory is private
 - Explicit send/receive to communicate
 - Message contains data and synchronization
 - Need to know Destination on generation of data (send)
 - Easy for Producer-Consumer
- Shared Memory
 - Memory is shared
 - Implicit communication via loads and stores
 - Implicit synchronization needed via Fences, Locks, and Flags
 - No need to know Destination on generation of date (can store in memory and user of data can pick up later)
 - Easy for multiple threads accessing a shared table
 - Needs Locks and critical sections to synchronize access

Shared Memory Tunneled over Messaging

• Software

Turn loads and stores into sends and receives

- Hardware
 - Replace bus communications with messages sent between cores and between cores and memory

Shared Memory Tunneled over Messaging

• Software

Turn loads and stores into sends and receives

- Hardware
 - Replace bus communications with messages sent between cores and between cores and memory

Messaging Tunneled over Shared Memory

 Use software queues (FIFOs) with locks to transmit data directly between cores by loads and stores to memory

Interconnect Design

- Switching
- Topology
- Routing
- Flow Control

- Flit: flow control digit (Basic unit of flow control)
- Phit: physical transfer digit (Basic unit of data transferred in one clock)

Switching

- Circuit Switched
- Store and Forward
- Cut-through
- Wormhole

Bus

Pipelined Bus / Segmented Bus

Ring / IP Torus

2D Mesh 0 6

Topology

2D

Torus

Star/ Fully connected crossbar

Omega Network

3- gry 3- cube mesh

Topology Parameters

- Routing Distance: Number of links between two points
- Diameter: Maximum routing distance between any two points
- Average Distance
- Minimum Bisection Bandwidth (Bisection Bandwidth): The bandwidth of a minimal cut though the network such that the network is divided into two sets of nodes
- Degree of a Router

Topology Parameters

2D Mesh

Diameter: $2\sqrt{N}$ - 2

Bisection Bandwidth: $2\sqrt{N}$

Degree of a Router: 5

Topology Influenced by Packaging

Star/ Fully connected crossbar . Wiring grows as N-1

 Physically hard to pack into 3-space (pack in sphere?)

Topology Influenced by Packaging

- Packing N dimensions in N-1 space leads to long wires
- Packing N dimensions in N-2 space leads to really long wires

Network Performance

- Bandwidth: The rate of data that can be transmitted over the network (network link) in a given time
- Latency: The time taken for a message to be sent from sender to receiver
- Bandwidth can affect latency
 - Reduce congestion
 - Messages take fewer Flits and Phits
- Latency can affect Bandwidth
 - Round trip communication can be limited by latency
 - Round trip flow-control can be limited by latency

Sprializer deserializer - Router Pipeline: RORIR2 -Link traversal: LO LI Packet I Head Phit SRORIRZ LOLIRORIR2D Body Phit SRORIRZ LOLIRORIR2D Body Phit S RO RI AZ LOLI RO RI AZ D Toil Phit S RORI R2 LOLI RORI R2D Sevialization Channe Ratency Router Pipeline Latency Latency to

Anatomy of Message Latency

 $T = T_{head} + L/b$

 T_{head} : Head Phit Latency, includes t_{C} , t_{R} , hop count, and contention

Unloaded Latency: $T_0 = H_R * t_R + H_C * t_C + L/b$

Anatomy of Message Latency

Packet 1 Head Phit S RO RIR2 LOLI RO RIR2D Body Phit S RO RI R2 LOLI RO RI R2D Body Phit S RO RI R2 LOLI RO RI R2D Toil Phit S RO RI R2 LOLI RO RI R2D Serialization Channel Latency Router Pipeline Latency to Latency to

Unloaded Latency:

 $T_0 = H_R * t_R + H_C * t_C + L/b$

Shorter routes

Faster channels Faster routers

Wider channels or shorter messages

Interconnection Network Performance

Routing

- Oblivious (routing path independent of state of network)
 - Deterministic
 - Non-Deterministic
- Adaptive (routing path depends on state of network)

Flow Control

- Local (Link or hop based) Flow Control
- End-to-end (Long distance)

Deadlock

 Deadlock can occur if cycle possible in "Waitsfor" graph

Deadlock Example (Waits-for and Holds analysis)

Deadlock Avoidance vs. Deadlock Recovery

Deadlock Avoidance

Protocol designed to never deadlock

- Deadlock Recovery
 - Allow Deadlock to occur and then resolve deadlock usually through use of more buffering

Acknowledgements

- These slides contain material developed and copyright by:
 - Arvind (MIT)
 - Krste Asanovic (MIT/UCB)
 - Joel Emer (Intel/MIT)
 - James Hoe (CMU)
 - John Kubiatowicz (UCB)
 - David Patterson (UCB)
 - Christopher Batten (Cornell)
- MIT material derived from course 6.823
- UCB material derived from course CS252 & CS152
- Cornell material derived from course ECE 4750

On/off with Combinational Stall Signal

stall D Packet A ₿ CD unstall D ABCD 2 ABC(D)D D 3 ABCCCCC ABBBBBCD AAAAB CD BC D В

B A CD A B B A 5 CD BB B AAAAA B B C D .

ABCD ABCD ABC DDDDD ABCQ ABCQ ABBBBBC D AAAABCD BCD

Credit - Based Flow Control

- LA CREDIT COUNTER
 - · Decrement counter on send packet
 - · Increment counter on credit recieved

Copyright © 2013 David Wentzlaff