Computer Architecture, Problem Set #5A
Note: We have procured permission to post these problems from Computer Architecture: A
Quantitative Approach from the publisher.

Problem #1 (10 Points): Page 254 in H&P5, Problem 3.13

For problem #1: Assume that 3 stall cycles after load means load has a latency of 4.

3.13 [25] <3.13> In this exercise, you wil_l explore performance. Eadle;fis t];:t:;’;]ei;
three processors that each employ dwffff:rent ty.pes_of multu- T?d:“;?};ed oo
these processors 1s superscalar, uses in-order plpehpes, }'egunf,s”a‘hL e
cvele stall following all loads and branches, and has 1dem1catl .1 caches. ‘dx ©
tions from the same thread issued in the same cycle are read in program order d
must not contain any data or control dependences.

: o vo
s Processor A is a superscalar SMT architecture, capable of issuing up to tv
instructions per cycle from two threads.

i > of issui - instruc-
m Processor B is a fine MT architecture, capable of issuing up to fom'm% e
tions per cycle from a single thread and switches threads on any pipeline stall.

m Processor C is a coarse MT architecture, capable of issuing up to eight

instructions per cycle from a single thread and switches threads on an L1
cache miss.

Our application is a list searcher, which scans a region of memory for a specific
value stored in R9 between the address range specified in R16 and R17. It is paral-
lelized by evenly dividing the search space into four equal-sized contiguous
blocks and assigning one search thread to each block (yielding four threads).
Most of each thread’s runtime is spent in the following unrolled loop body:

(Continued on next page)

Copyright © 2011, Elsevier Inc. All rights Reserved

loop: LD R1,0(R16)
LD R2,8(R16)
LD R3,16(R16)
LD R4,24(R16)
LD R5,32(R16)
LD R6,40(R16)
LD R7,48(R16)
LD R8,56(R16)
BEQAL R9,R1,match0
BEQAL R9,RZ2,matchl
BEQAL R9,R3,match2
BEQAL R9,R4,match3
BEQAL R9,R5,match4
BEQAL R9,R6,matchb
BEQAL R9,R7,matchb
BEQAL R9,R8,match7
DADDIU R16,R16,#64
BLT R16,R17,1oop
Assume the following:
® A barrier is used to ensure that all threads begin simultaneously.
m The first L1 cache miss occurs after two iterations of the loop.
m None of the BEQAL branches is taken.
m The BLT is always taken.
m All three processors schedule threads in a round-robin fashion.

Determine how many cycles are required for each processor to complete the first
two iterations of the loop.

Copyright © 2011, Elsevier Inc. All rights Reserved

Problem # 10 (10 Points): Page 420 in H&P5, Problem 5.11

. LLwg e

511 [25] <5.4> Exercise 5.3 asked you to add the Owned state to the simple MSI snoop-
ing protocol. Repeat the question, but with the simple directory protocol above.

Mo v ATFEFenlE o dO

Case Study 2: Simple Directory-Based Cohe-rence

Concepts illustrated by this case study

m Directory Coherence Protocol Transitions
s Coherence Protocol Performance

_m Coherence Protocol Optimizations

Consider the distributed shared-memory system illustrated in Figure 5.37. It con-
sists of two four-core chips. The processor in each chip share an L2 cache (L23),
and the two chips are connected via a point-to-point interconnect. The system
memory is distributed across the two chips. Figure 5.38 zooms in on part of this
system. Pi,J denotes processor i in chip j. Each processor has a single direct-
mapped L1 cache that holds two blocks, each holding two words. Each chip has a
single direct-mapped L2 cache that holds two blocks, each holding two words. To
simplify the {llustration, the cache address tags contain the full address and each
word shows only two hex characters, with the least significant word on the right.
The L1 cache states are denoted M, S, and 1 for Modified, Shared, and Invalid.
Both the L2 caches and memories have directories. The directory states are denoted
DM, DS, and DI for Directory Modified, Directory Shared. and Directory Invalid.
The simple directory protocol is described in Figures 5.22 and 5.23. The L2 direc-
tory lists the local sharers/owners and additionally records if a line is shared exter-
nally in another chip; for example, P1,0;E denotes that a line is shared by local
processor P1,0 and is externally shared in some other chip. The memory directory
has a list of the chip sharers/owners of a line; for example, C0,C1 denotes that a
line is shared in chips 0 and 1.

Copyright © 2011, Elsevier Inc. All rights Reserved

Chip0
PO P1
P3 | P2]
r
L2§

MO

‘Chi;ﬂ
P3 P2 |
5
k
1

v

L2

KN

Figure 5.37 Multichip, multicore multiprocessor with DSM.

P0,0 PO,1

P3,1
| Coherency = Address | Goherency | Address | | Coherency ' Address | 5
| state | tag Data | state fag - Eagiaretae T s otag k. hate
B0 M 100 00 10 Bo M 130 00 68 ‘B0 S 120 00 20
Bl s 108 00 08 B1 5 ii8 18 B S 108 00 08
L2%, 0 L2$,1
| : | Owner/ ' Address | | Cwner/ ~Address |
Address State ' sharers tag Data Address = Stale sharers tag | Data
: % DM PO,1 100 00 10 EESRERE 0 DS PA 120 00 20
DS P0,0; E 108 00 08 Bi =~ DS Pp3t:E 108 00 08
DM Pi,0 130 00 68 eI DI - - 00 10
Ds P1,0 118 00 18 B ol = - 00 20
—
Mo M1
: Address State %O«nen’sharers: Data | Data
L1000 DM G0 00 10 00 20
1o Ds Co, C1 00 08 00 28
Mo DI 2 00 10 00 68
An g i DS co 00 18 00 96

Figure 5.38 Cache and memory states in the multichip, multicore multiprocessor.

Copyright © 2011, Elsevier Inc. All rights Reserved

5.3 [20] <5.2> Many snooping coherence protocols have additional states, state tran-
sitions, or bus transactions to reduce the overhead of maintaining cache coher-
ency. In Implementation 1 of Exercise 5.2, misses are incurring fewer stall cycles
when they are supplied by cache than when they are supplied by memory. Some
coherence protocols try to improve performance by increasing the frequency of
this case. A common protocol optimization is to introduce an Owned state (usu-
ally denoted O). The Owned state behaves like the Shared state in that nodes may
only read Owned blocks, but it behaves like the Modified state in that nodes must
supply data on other nodes’ read and write misses to Owned blocks. A read miss
to a block in either the Modified or Owned states supplies data to the requesting
node and transitions to the Owned state. A write miss to a block in either state
Modified or Owned supplies data to the requesting node and transitions to state
Invalid. This optimized MOSI protocol only updates memory when a node
replaces a block in state Modified or Owned. Draw new protocol diagrams with
the additional state and transitions.

Copyright © 2011, Elsevier Inc. All rights Reserved

