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symmetric 
• All memory is equally far  
  away from all processors 
• Any processor can do any I/O 
  (set up a DMA transfer) 

Symmetric Multiprocessors 

Memory 
I/O controller 

Graphics 
output 

CPU-Memory bus 

bridge 

Processor 

I/O controller I/O controller 

I/O bus 

Networks 

Processor       
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Synchronization 

The need for synchronization arises whenever  
there are concurrent processes in a system 
 (even in a uniprocessor system) 
 
 
Producer-Consumer: A consumer process  
must wait until the producer process has  
produced data 
 
Mutual Exclusion: Ensure that only one 
process uses a resource at a given time 

producer 

consumer 

Shared 
Resource 

P1 P2 
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A Producer-Consumer Example 

The program is written assuming 
instructions are executed in order.  

Producer posting Item x: 
 Load Rtail, (tail) 
 Store x, (Rtail) 
 Rtail=Rtail+1 
 Store Rtail, (tail) 

Consumer: 
 Load Rhead, (head) 
spin: Load Rtail, (tail) 
 if Rhead==Rtail goto spin 
 Load R, (Rhead) 
 Rhead=Rhead+1 
 Store Rhead, (head) 
  process(R) 

Producer Consumer 
tail head 

  Rtail 
Rtail Rhead R 

Problems? 
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A Producer-Consumer Example 
continued 

Producer posting Item x: 
 Load Rtail, (tail) 
 Store x, (Rtail) 
 Rtail=Rtail+1 
 Store Rtail, (tail)  

Consumer: 
 Load Rhead, (head) 
spin: Load Rtail, (tail) 
 if Rhead==Rtail goto spin 
 Load R, (Rhead) 
 Rhead=Rhead+1 
 Store Rhead, (head) 
 process(R) 

Can the tail pointer get updated 
before the item x is stored? 

Programmer assumes that if 3 happens after 2, then 4 
happens after 1. 
 
Problem sequences are: 

  2, 3, 4, 1 
  4, 1, 2, 3 

1 

2 

3 

4 
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Sequential Consistency 
A Memory Model 

“ A system is sequentially consistent if the result of 
any execution is the same as if the operations of all 
the processors were executed in some sequential  
order, and the operations of each individual processor 
appear in the order specified by the program” 
      Leslie Lamport 
 
Sequential Consistency =  
 arbitrary order-preserving interleaving 
 of memory references of sequential programs 

M 

P P P P P P 
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Sequential Consistency 

Sequential concurrent tasks: T1, T2 
Shared variables: X, Y  (initially X = 0, Y = 10) 
 
 
T1:    T2: 

Store 1, (X) (X =  1)       Load R1, (Y)   
Store 11, (Y) (Y = 11)       Store R1, (Y’) (Y’= Y) 
          Load R2, (X)  
          Store R2, (X’) (X’= X) 
 
 

what are the legitimate answers for X’ and Y’ ? 
 
 (X’,Y’)  {(1,11), (0,10), (1,10), (0,11)}  ? 
 

If Y is 11 then X cannot be 0 
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Sequential Consistency 

Sequential consistency imposes more memory ordering 
constraints than those imposed by uniprocessor 
program dependencies (     ) 
 
      What are these in our example ? 
 
T1:    T2: 

Store 1, (X) (X =  1)       Load R1, (Y)   
Store 11, (Y) (Y = 11)       Store (Y’), R1 (Y’= Y) 
          Load R2, (X)  
          Store (X’), R2 (X’= X) additional SC requirements 

Does (can) a system with caches or out-of-order  
execution capability provide a sequentially consistent  
view of the memory ? 
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Multiple Consumer Example 

Producer posting Item x: 
 Load Rtail, (tail) 
 Store x, (Rtail) 
 Rtail=Rtail+1 
 Store Rtail ,(tail) 

Consumer: 
 Load Rhead, (head) 
spin: Load Rtail, (tail) 
 if Rhead==Rtail goto spin 
 Load R, (Rhead) 
 Rhead=Rhead+1 
 Store Rhead , (head)  
 process(R) 

What is wrong with this code? 

Critical section: 
Needs to be executed atomically 
by one consumer  locks 

tail head 
Producer 

  Rtail 

 
Consumer 
1 

  R    Rhead 

Rtail    

 
Consumer 
2 

  R    Rhead 

Rtail    

11 



Locks or Semaphores 
E. W. Dijkstra, 1965 

A semaphore is a non-negative integer, with the 
following operations: 
 

P(s): if s>0, decrement s by 1, otherwise wait 
               probeer te verlagen, literally ("try to reduce”) 
    
V(s): increment s by 1 and wake up one of  
    the waiting processes 
          verhogen ("increase") 

P’s and V’s must be executed atomically, i.e., without 
• interruptions or 
• interleaved accesses to s by other processors  

initial value of s determines  
the maximum no. of processes 
in the critical section 

Process i  
P(s) 
    <critical section> 
V(s) 
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Implementation of Semaphores 
Semaphores (mutual exclusion) can be implemented  
using ordinary Load and Store instructions in the  
Sequential Consistency memory model. However,  
protocols for mutual exclusion are difficult to design... 
 

Simpler solution: 
  atomic read-modify-write instructions 

Test&Set (m), R:  
R  M[m]; 
if  R==0 then   

 M[m] 1; 

Swap (m), R:  
Rt  M[m]; 
M[m] R; 
R Rt; 

Fetch&Add (m), RV, R: 
R  M[m]; 
M[m] R + RV; 

Examples: m is a memory location, R is a register 
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Critical 
Section 

P:   Test&Set (mutex),Rtemp 
 if (Rtemp!=0) goto P 
 Load Rhead, (head) 
spin: Load Rtail, (tail) 
 if Rhead==Rtail goto spin 
 Load R, (Rhead) 
 Rhead=Rhead+1 
 Store Rhead, (head)  
V:  Store 0, (mutex) 
 process(R) 

Multiple Consumers Example 
using the Test&Set Instruction 

Other atomic read-modify-write instructions (Swap,  
Fetch&Add, etc.) can also implement P’s and V’s 

What if the process stops or is swapped out while 
in the critical section? 
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Nonblocking Synchronization 
Compare&Swap(m), Rt, Rs: 
 if (Rt==M[m]) 
     then  M[m]=Rs; 

   Rs=Rt ; 

   status success; 
     else status fail; 

try:   Load Rhead, (head) 
spin: Load Rtail, (tail) 
 if Rhead==Rtail goto spin 
 Load R, (Rhead) 
 Rnewhead = Rhead+1 
 Compare&Swap(head), Rhead, Rnewhead 
 if (status==fail) goto try 
 process(R) 

status is an 
implicit 
argument  
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Load-link & Store-conditional 
aka Load-reserve, Load-Locked 

Special register(s) to hold reservation flag and address,  
and the outcome of store-conditional 

try:   Load-link Rhead, (head) 
spin: Load Rtail, (tail) 
 if Rhead==Rtail goto spin 
 Load R, (Rhead) 
 Rhead = Rhead + 1 
 Store-conditional Rhead, (head) 
 if (status==fail) goto try 
 process(R) 

Load-link R, (m): 
<flag, adr>  <1, m>;  
R  M[m]; 

Store-conditional (m), R: 
if <flag, adr> == <1, m>  
then  cancel other procs’  
    reservation on m; 

   M[m] R;   
   status succeed; 

else  status fail; 
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Performance of Locks 
Blocking atomic read-modify-write instructions 
 e.g., Test&Set, Fetch&Add, Swap  
   vs 
Non-blocking atomic read-modify-write instructions 
 e.g., Compare&Swap,  
         Load-link/Store-conditional 
   vs 
Protocols based on ordinary Loads and Stores 
 
 
Performance depends on several interacting factors: 
 degree of contention,  
 caches,  
 out-of-order execution of Loads and Stores 
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Issues in Implementing  
Sequential Consistency 

Implementation of SC is complicated by two issues 
 

• Out-of-order execution capability 
Load(a); Load(b)  yes 
Load(a); Store(b)  yes if a  b 
Store(a); Load(b)  yes if a  b 
Store(a); Store(b) yes if a  b 

 

• Caches 
Caches can prevent the effect of a store from  
being seen by other processors 

M 

P P P P P P 

SC complications motivate architects to consider 
weak or relaxed memory models 18 



Memory Fences 
Instructions to sequentialize memory accesses 

Processors with relaxed or weak memory models permit Loads and Stores to 
different addresses to be reordered, remove some/all extra dependencies 
imposed by SC 
• LL, LS, SL, SS 

 
Need to provide memory fence instructions to force the serialization of 
memory accesses 
 
Examples of relaxed memory models: 
• Total Store Order: LL, LS, SS, enforce SL with fence 
• Partial Store Order: LL, LS, enforce SL, SS with fences 
• Weak Ordering: enforce LL, LS, SL, SS with fences 

 
Memory fences are expensive operations – mem instructions wait for all 
relevant instructions in-flight to complete (including stores to retire – need 
store acks) 
However, cost of serialization only when it is required! 
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Using Memory Fences 

Producer posting Item x: 
 Load Rtail, (tail) 
 Store x, (Rtail) 
 MFenceSS 
 Rtail=Rtail+1 
 Store Rtail, (tail) 

Consumer: 
 Load Rhead, (head) 
spin: Load Rtail, (tail) 
 if Rhead==Rtail goto spin 
 MFenceLL 
 Load R, (Rhead) 
 Rhead=Rhead+1 
 Store Rhead, (head) 
 process(R) 

Producer Consumer 
tail head 

  Rtail 
Rtail Rhead R 

ensures that tail ptr 
is not updated before  
x has been stored 

ensures that R is 
not loaded before  
x has been stored 
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Mutual Exclusion Using Load/Store  
A protocol based on two shared variables c1 and c2.  
Initially, both c1 and c2 are 0 (not busy) 

What is wrong? 

Process 1 
 ... 
c1=1; 

L:  if c2==1 then go to L 
  < critical section> 
c1=0; 

Process 2 
 ... 
c2=1; 

L:  if c1==1 then go to L 
  < critical section> 
c2=0; 

Deadlock! 
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Mutual Exclusion: second attempt 

To avoid deadlock, let a process give up the reservation  
(i.e. Process 1 sets c1 to 0) while waiting. 

• Deadlock is not possible but with a low probability  
  a livelock may occur. 
 
• An unlucky process may never get to enter the  
  critical section     starvation 

Process 1 
 ... 

L:  c1=1; 
if c2==1 then  

 { c1=0; go to L} 
  < critical section> 
c1=0 

Process 2 
 ... 

L:  c2=1; 
if c1==1 then  

 { c2=0; go to L} 
  < critical section> 
c2=0 
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A Protocol for Mutual Exclusion 
T. Dekker, 1966 

Process 1 
... 
c1=1; 
turn = 1; 

L: if c2==1 && turn==1  
 then go to L 

  < critical section> 
c1=0; 

A protocol based on 3 shared variables c1, c2 and turn.  
Initially, both c1 and c2 are 0 (not busy) 

• turn == i ensures that only process i can wait  
• variables c1 and c2 ensure mutual exclusion 
 Solution for n processes was given by Dijkstra  
           and is quite tricky! 

Process 2 
... 
c2=1; 
turn = 2; 

L: if c1==1 && turn==2  
  then go to L 

  < critical section> 
c2=0; 
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N-process Mutual Exclusion 
Lamport’s Bakery Algorithm 

Process i 
 
 

choosing[i] = 1; 
num[i] = max(num[0], …, num[N-1]) + 1; 
choosing[i] = 0; 
 

for(j = 0; j < N; j++)  { 
while( choosing[j] ); 
while( num[j] && 
            ( ( num[j] < num[i] ) || 
               ( num[j] == num[i] &&  j < i ) ) ); 

} 
 
 
num[i] = 0; 

Initially num[j] = 0, for all j 
Entry Code 

Exit Code 
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symmetric 
• All memory is equally far  
  away from all processors 
• Any processor can do any I/O 
  (set up a DMA transfer) 

Symmetric Multiprocessors 

Memory 
I/O controller 

Graphics 
output 

CPU-Memory bus 

bridge 

Processor 

I/O controller I/O controller 

I/O bus 

Networks 

Processor       
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Multidrop Memory Bus 

Control 

Address 

Data 

Clock 

Processor 1 Processor 2 
Main 

Memory 

Arbitration 
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Pipelined Memory Bus 

Control 

Address 

Data 

Clock 

Processor 1 Processor 2 
Main 

Memory 

Arbitration 
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Pipelined Memory Bus 

28 

Control 

Address 

Data 

Clock 

Processor 1 Processor 2 
Main 

Memory 

LD 

0x1234abcd 

0xDA7E0000 

Arbitration 

P1 



Memory Coherence in SMPs 

Suppose CPU-1 updates A to 200.   
  write-back:  memory and cache-2 have stale values 
  write-through:  cache-2 has a stale value 
  

Do these stale values matter? 
What is the view of shared memory for programming? 

cache-1 A 100 

CPU-Memory bus 

CPU-1 CPU-2 

cache-2 A 100 

memory A 100 
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Write-back Caches & SC 

• T1 is executed  

prog T2 
LD Y, R1 
ST R1, Y’ 
LD X, R2 
ST R2, X’ 

  prog T1 
  ST 1, X 
  ST 11, Y 

cache-2 cache-1 memory 
  X = 0 
  Y =10 
  X’= 
  Y’= 

  X= 1 
  Y=11 

  Y = 
  Y’=  
  X =  
  X’=   

• cache-1 writes back Y 
  X = 0 
  Y =11 
  X’= 
  Y’= 

  X= 1 
  Y=11 

  Y = 
  Y’=  
  X =  
  X’=   

  X = 1 
  Y =11 
  X’= 
  Y’= 

  X= 1 
  Y=11 

  Y = 11 
  Y’= 11 
  X = 0 
  X’= 0 

• cache-1 writes back X 

  X = 0 
  Y =11 
  X’= 
  Y’= 

  X= 1 
  Y=11 

  Y = 11 
  Y’= 11 
  X = 0 
  X’= 0 

• T2 executed 

  X = 1 
  Y =11 
  X’= 0 
  Y’=11 

  X= 1 
  Y=11 

  Y =11 
  Y’=11  
  X = 0 
  X’= 0  

• cache-2 writes back  
   X’ & Y’ 

30 



Write-through Caches & SC 
cache-2 
  Y =  
  Y’=  
  X = 0 
  X’=   

memory 
  X = 0 
  Y =10 
  X’= 
  Y’= 

cache-1 
  X= 0 
  Y=10 

prog T2 
LD Y, R1 
ST Y’, R1 
LD X, R2 
ST X’,R2 

  prog T1 
  ST 1, X 
  ST 11, Y 

Write-through caches don’t preserve 
sequential consistency either 

• T1 executed 

 
  Y =  
  Y’=  
  X = 0 
  X’=   

 
  X = 1 
  Y =11 
  X’= 
  Y’= 

 
  X= 1 
  Y=11 

• T2 executed 

 
  Y = 11 
  Y’= 11 
  X = 0 
  X’= 0 

 
  X = 1 
  Y =11 
  X’= 0 
  Y’=11 

 
  X= 1 
  Y=11 
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Cache Coherence vs. 
Memory Consistency 

• A cache coherence protocol ensures that all writes by 
one processor are eventually visible to other 
processors, for one memory address 
– i.e., updates are not lost 

• A memory consistency model gives the rules on when a 
write by one processor can be observed by a read on 
another, across different addresses 
– Equivalently, what values can be seen by a load 

• A cache coherence protocol is not enough to ensure 
sequential consistency 
– But if sequentially consistent, then caches must be 

coherent 

• Combination of cache coherence protocol plus 
processor memory reorder buffer implements a given 
machine’s memory consistency model 
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Warmup: Parallel I/O 

 (DMA stands for “Direct Memory Access”, means the I/O device 
can read/write memory autonomous from the CPU) 

Either Cache or DMA can 
be the Bus Master and 
effect transfers 

 DISK 

 DMA 

Physical 
Memory 

Proc.  

R/W  

Data (D) Cache 

Address (A) 

A 

D 

R/W  

Page transfers 
occur while the 
Processor is running 

Memory 
   Bus 
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Problems with Parallel I/O 

Memory      Disk: Physical memory may be 
                              stale if cache copy is dirty 
 
Disk     Memory:  Cache may hold stale data and not 
   see memory writes  

 DISK 

 DMA 

Physical 
Memory 

Proc. 
Cache 

Memory 
   Bus 

Cached portions 
       of page 

 DMA transfers 
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Snoopy Cache Goodman & Ravishankar 1983 

• Idea: Have cache watch (or snoop upon) DMA 
transfers, and then “do the right thing” 

• Snoopy cache tags are dual-ported 

 Proc.  

 Cache 

Snoopy read port 
attached to Memory 
Bus 

 Data 
(lines) 

Tags and 
    State 

A 

D 

R/W  

Used to drive Memory Bus 
when Cache is Bus Master 

A 

R/W  
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Shared Memory Multiprocessor 

   Use snoopy mechanism to keep all processors’ view of 
memory coherent 

P1 

P2 

P3 

Snoopy 
 Cache 

DMA 

Physical 
 Memory 

Memory 
   Bus 

Snoopy 
 Cache 

Snoopy 
 Cache 

 DISKS 
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Update(Broadcast) vs. Invalidate 
Snoopy Cache Coherence Protocols 

• Write Update (Broadcast) 

– Writes are broadcast and update all other cache 
copies 

• Write Invalidate 

– Writes invalidate all other cache copies 
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Write Update (Broadcast) Protocols 

write miss: 
Broadcast on bus, other processors update 
copies (in place) 

 
read miss: 

Memory is always up to date 
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Write Invalidate Protocols 

write miss: 
the address is invalidated in all other 
caches before the write is performed 

 
read miss: 

if a dirty copy is found in some cache, a write-
back is performed before the memory is read   
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Cache State Transition Diagram 
The MSI protocol 

M 

S I 

M: Modified 
S: Shared  
 I: Invalid 

Each cache line has state bits 

Address tag 

state 
 bits Write miss 

(P1 gets line from memory) 
 

Other processor 
intent to write 
(P1 writes back) 

 Read miss 
(P1 gets line from memory) 

Other processor 
intent to write 

Read by any 
 processor 

P1 reads 
or writes 

Cache state in 
processor P1 

Other processor reads 
(P1 writes back) 
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Two Processor Example 
(Reading and writing the same cache line) 

M 

S I 

Write miss 

 Read 
 miss 

P2 intent to write 

P2 reads, 
P1 writes back 

P1 reads 
or writes 

P2 intent to write 

P1 

M 

S I 

Write miss 

 Read 
 miss 

P1 intent to write 

P1 reads, 
P2 writes back 

P2 reads 
or writes 

P1 intent to write 

P2 

P1 reads 

P1 writes 

P2 reads 
P2 writes 

P1 writes 

P2 writes 

P1 reads 

P1 writes 
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Observation 

• If a line is in the M state then no other cache can have a 
copy of the line! 
–  Memory stays coherent, multiple differing copies cannot exist 

M 

S I 

Write miss 

Other processor 
intent to write 

 Read 
 miss 

Other processor 
intent to write 

Read by any 
 processor 

P1 reads 
or writes 

Other processor reads 
P1 writes back 
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MESI: An Enhanced MSI protocol 
 increased performance for private data (Illinois Protocol) 

M E 

S I 

M: Modified Exclusive 
E: Exclusive but unmodified 
S: Shared  
 I: Invalid 

Each cache line has a tag 

Address tag 

state 
 bits 

Write miss 

Other processor 
intent to write 

Read miss, 
shared 

Other processor 
intent to write 

P1 write 

Read by any 
 processor 

Other processor reads 

P1 writes back 

P1 read 
P1 write 
or read 

Cache state in 
processor P1 

P1 intent 
to write 

Read miss, 
not shared Other 

processor 
reads 

Other processor 
intent to write, 
P1 writes back 
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MOESI (Used in AMD Opteron) 

M E 

S I 

M: Modified Exclusive 
O: Owned 
E: Exclusive but unmodified 
S: Shared  
 I: Invalid 

Each cache line has a tag 

Address tag 

state 
 bits 

Write miss 

Other processor 
intent to write 

Read miss, 
shared 

Other processor 
intent to write 

P1 write 

Read by any 
 processor 

Other processor reads 

P1 tracks write back 

P1 read 
P1 write 
or read 

Cache state in 
processor P1 

P1 intent 
to write 

Read miss, 
not shared Other 

processor 
reads 

Other processor 
intent to write, 
P1 writes back 
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P1 write 

Read by any 
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MESIF (Used by Intel Core i7)  

M E 

S/F I 

M: Modified Exclusive 
E: Exclusive but unmodified 
S: Shared  
 I: Invalid 
F: Forward 

Each cache line has a tag 

Address tag 

state 
 bits 

Write miss 

Other processor 
intent to write 

Read miss, 
shared 

Other processor 
intent to write 

P1 write 

Read by any 
 processor 

Other processor reads 

P1 writes back 

P1 read 
P1 write 
or read 

Cache state in 
processor P1 

P1 intent 
to write 

Read miss, 
not shared Other 

processor 
reads 

Other processor 
intent to write, 
P1 writes back 
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Scalability Limitations of Snooping 

• Caches 
– Bandwidth into caches 

– Tags need to be dual ported or steal cycles for 
snoops 

– Need to invalidate all the way to L1 cache 

• Bus 
– Bandwidth 

– Occupancy (As number of cores grows, atomically 
utilizing bus becomes a challenge) 
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False Sharing 

state   blk addr  data0 data1        ...     dataN 

A cache block contains more than one word 
 
Cache-coherence is done at the block-level and 
not word-level 
 
Suppose M1 writes wordi and M2 writes wordk and 
both words have the same block address. 
 
What can happen? 
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Blackboard Example: Sequential 
Consistency 

                   Valid     Not Valid 
P1      P2        1  1  5       5 
1       5         2  2  6       1 
2       6         5  3  7       3 
3       7         3  4  1       2 
4       8         6  5  2       4 
                  7  6  3       6 
                  8  7  4       7 
                  4  8  8       8 
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Analysis of Dekker’s Algorithm 
...   Process 1 
c1=1; 
turn = 1; 

L: if c2=1 & turn=1  
 then go to L 

  < critical section> 
c1=0; 

...   Process 2 
c2=1; 
turn = 2; 

L: if c1=1 & turn=2  
  then go to L 

  < critical section> 
c2=0; 

S
c
e
n
a
ri
o
 1

 

...   Process 1 
c1=1; 
turn = 1; 

L: if c2=1 & turn=1  
 then go to L 

  < critical section> 
c1=0; 

...   Process 2 
c2=1; 
turn = 2; 

L: if c1=1 & turn=2  
  then go to L 

  < critical section> 
c2=0; 

S
c
e
n
a
ri
o
 2
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