
Computer Architecture
ELE 475 / COS 475

Slide Deck 13: Parallel Programming
and Small Multiprocessors

David Wentzlaff

Department of Electrical Engineering

Princeton University

1

Trends in Computation

Typical Power
(Watts)

Transistors
(Thousands)

Sequential
Performance
(SpecINT)

Frequency
(MHz)

Data collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, C. Batten, and D. Wentzlaff 2

Typical Power
(Watts)

Transistors
(Thousands)

Sequential
Performance
(SpecINT)

Frequency
(MHz)

Cores

Data collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, C. Batten, and D. Wentzlaff

Trends in Computation

3

symmetric
• All memory is equally far
 away from all processors
• Any processor can do any I/O
 (set up a DMA transfer)

Symmetric Multiprocessors

Memory
I/O controller

Graphics
output

CPU-Memory bus

bridge

Processor

I/O controller I/O controller

I/O bus

Networks

Processor

4

Synchronization

The need for synchronization arises whenever
there are concurrent processes in a system
 (even in a uniprocessor system)

Producer-Consumer: A consumer process
must wait until the producer process has
produced data

Mutual Exclusion: Ensure that only one
process uses a resource at a given time

producer

consumer

Shared
Resource

P1 P2

5

A Producer-Consumer Example

The program is written assuming
instructions are executed in order.

Producer posting Item x:
 Load Rtail, (tail)
 Store x, (Rtail)
 Rtail=Rtail+1
 Store Rtail, (tail)

Consumer:
 Load Rhead, (head)
spin: Load Rtail, (tail)
 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rhead=Rhead+1
 Store Rhead, (head)
 process(R)

Producer Consumer
tail head

 Rtail
Rtail Rhead R

Problems?

6

A Producer-Consumer Example
continued

Producer posting Item x:
 Load Rtail, (tail)
 Store x, (Rtail)
 Rtail=Rtail+1
 Store Rtail, (tail)

Consumer:
 Load Rhead, (head)
spin: Load Rtail, (tail)
 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rhead=Rhead+1
 Store Rhead, (head)
 process(R)

Can the tail pointer get updated
before the item x is stored?

Programmer assumes that if 3 happens after 2, then 4
happens after 1.

Problem sequences are:

 2, 3, 4, 1
 4, 1, 2, 3

1

2

3

4

7

Sequential Consistency
A Memory Model

“ A system is sequentially consistent if the result of
any execution is the same as if the operations of all
the processors were executed in some sequential
order, and the operations of each individual processor
appear in the order specified by the program”
 Leslie Lamport

Sequential Consistency =
 arbitrary order-preserving interleaving
 of memory references of sequential programs

M

P P P P P P

8

Sequential Consistency

Sequential concurrent tasks: T1, T2
Shared variables: X, Y (initially X = 0, Y = 10)

T1: T2:

Store 1, (X) (X = 1) Load R1, (Y)
Store 11, (Y) (Y = 11) Store R1, (Y’) (Y’= Y)
 Load R2, (X)
 Store R2, (X’) (X’= X)

what are the legitimate answers for X’ and Y’ ?

 (X’,Y’)  {(1,11), (0,10), (1,10), (0,11)} ?

If Y is 11 then X cannot be 0

9

Sequential Consistency

Sequential consistency imposes more memory ordering
constraints than those imposed by uniprocessor
program dependencies ()

 What are these in our example ?

T1: T2:

Store 1, (X) (X = 1) Load R1, (Y)
Store 11, (Y) (Y = 11) Store (Y’), R1 (Y’= Y)
 Load R2, (X)
 Store (X’), R2 (X’= X) additional SC requirements

Does (can) a system with caches or out-of-order
execution capability provide a sequentially consistent
view of the memory ?

10

Multiple Consumer Example

Producer posting Item x:
 Load Rtail, (tail)
 Store x, (Rtail)
 Rtail=Rtail+1
 Store Rtail ,(tail)

Consumer:
 Load Rhead, (head)
spin: Load Rtail, (tail)
 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rhead=Rhead+1
 Store Rhead , (head)
 process(R)

What is wrong with this code?

Critical section:
Needs to be executed atomically
by one consumer  locks

tail head
Producer

 Rtail

Consumer
1

 R Rhead

Rtail

Consumer
2

 R Rhead

Rtail

11

Locks or Semaphores
E. W. Dijkstra, 1965

A semaphore is a non-negative integer, with the
following operations:

P(s): if s>0, decrement s by 1, otherwise wait
 probeer te verlagen, literally ("try to reduce”)

V(s): increment s by 1 and wake up one of
 the waiting processes
 verhogen ("increase")

P’s and V’s must be executed atomically, i.e., without
• interruptions or
• interleaved accesses to s by other processors

initial value of s determines
the maximum no. of processes
in the critical section

Process i
P(s)
 <critical section>
V(s)

12

Implementation of Semaphores
Semaphores (mutual exclusion) can be implemented
using ordinary Load and Store instructions in the
Sequential Consistency memory model. However,
protocols for mutual exclusion are difficult to design...

Simpler solution:
 atomic read-modify-write instructions

Test&Set (m), R:
R  M[m];
if R==0 then

 M[m] 1;

Swap (m), R:
Rt  M[m];
M[m] R;
R Rt;

Fetch&Add (m), RV, R:
R  M[m];
M[m] R + RV;

Examples: m is a memory location, R is a register

13

Critical
Section

P: Test&Set (mutex),Rtemp
 if (Rtemp!=0) goto P
 Load Rhead, (head)
spin: Load Rtail, (tail)
 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rhead=Rhead+1
 Store Rhead, (head)
V: Store 0, (mutex)
 process(R)

Multiple Consumers Example
using the Test&Set Instruction

Other atomic read-modify-write instructions (Swap,
Fetch&Add, etc.) can also implement P’s and V’s

What if the process stops or is swapped out while
in the critical section?

14

Nonblocking Synchronization
Compare&Swap(m), Rt, Rs:
 if (Rt==M[m])
 then M[m]=Rs;

 Rs=Rt ;

 status success;
 else status fail;

try: Load Rhead, (head)
spin: Load Rtail, (tail)
 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rnewhead = Rhead+1
 Compare&Swap(head), Rhead, Rnewhead
 if (status==fail) goto try
 process(R)

status is an
implicit
argument

15

Load-link & Store-conditional
aka Load-reserve, Load-Locked

Special register(s) to hold reservation flag and address,
and the outcome of store-conditional

try: Load-link Rhead, (head)
spin: Load Rtail, (tail)
 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rhead = Rhead + 1
 Store-conditional Rhead, (head)
 if (status==fail) goto try
 process(R)

Load-link R, (m):
<flag, adr>  <1, m>;
R  M[m];

Store-conditional (m), R:
if <flag, adr> == <1, m>
then cancel other procs’
 reservation on m;

 M[m] R;
 status succeed;

else status fail;

16

Performance of Locks
Blocking atomic read-modify-write instructions
 e.g., Test&Set, Fetch&Add, Swap
 vs
Non-blocking atomic read-modify-write instructions
 e.g., Compare&Swap,
 Load-link/Store-conditional
 vs
Protocols based on ordinary Loads and Stores

Performance depends on several interacting factors:
 degree of contention,
 caches,
 out-of-order execution of Loads and Stores

17

Issues in Implementing
Sequential Consistency

Implementation of SC is complicated by two issues

• Out-of-order execution capability
Load(a); Load(b) yes
Load(a); Store(b) yes if a  b
Store(a); Load(b) yes if a  b
Store(a); Store(b) yes if a  b

• Caches
Caches can prevent the effect of a store from
being seen by other processors

M

P P P P P P

SC complications motivate architects to consider
weak or relaxed memory models 18

Memory Fences
Instructions to sequentialize memory accesses

Processors with relaxed or weak memory models permit Loads and Stores to
different addresses to be reordered, remove some/all extra dependencies
imposed by SC
• LL, LS, SL, SS

Need to provide memory fence instructions to force the serialization of
memory accesses

Examples of relaxed memory models:
• Total Store Order: LL, LS, SS, enforce SL with fence
• Partial Store Order: LL, LS, enforce SL, SS with fences
• Weak Ordering: enforce LL, LS, SL, SS with fences

Memory fences are expensive operations – mem instructions wait for all
relevant instructions in-flight to complete (including stores to retire – need
store acks)
However, cost of serialization only when it is required!

19

Using Memory Fences

Producer posting Item x:
 Load Rtail, (tail)
 Store x, (Rtail)
 MFenceSS
 Rtail=Rtail+1
 Store Rtail, (tail)

Consumer:
 Load Rhead, (head)
spin: Load Rtail, (tail)
 if Rhead==Rtail goto spin
 MFenceLL
 Load R, (Rhead)
 Rhead=Rhead+1
 Store Rhead, (head)
 process(R)

Producer Consumer
tail head

 Rtail
Rtail Rhead R

ensures that tail ptr
is not updated before
x has been stored

ensures that R is
not loaded before
x has been stored

20

Mutual Exclusion Using Load/Store
A protocol based on two shared variables c1 and c2.
Initially, both c1 and c2 are 0 (not busy)

What is wrong?

Process 1
 ...
c1=1;

L: if c2==1 then go to L
 < critical section>
c1=0;

Process 2
 ...
c2=1;

L: if c1==1 then go to L
 < critical section>
c2=0;

Deadlock!

21

Mutual Exclusion: second attempt

To avoid deadlock, let a process give up the reservation
(i.e. Process 1 sets c1 to 0) while waiting.

• Deadlock is not possible but with a low probability
 a livelock may occur.

• An unlucky process may never get to enter the
 critical section    starvation

Process 1
 ...

L: c1=1;
if c2==1 then

 { c1=0; go to L}
 < critical section>
c1=0

Process 2
 ...

L: c2=1;
if c1==1 then

 { c2=0; go to L}
 < critical section>
c2=0

22

A Protocol for Mutual Exclusion
T. Dekker, 1966

Process 1
...
c1=1;
turn = 1;

L: if c2==1 && turn==1
 then go to L

 < critical section>
c1=0;

A protocol based on 3 shared variables c1, c2 and turn.
Initially, both c1 and c2 are 0 (not busy)

• turn == i ensures that only process i can wait
• variables c1 and c2 ensure mutual exclusion
 Solution for n processes was given by Dijkstra
 and is quite tricky!

Process 2
...
c2=1;
turn = 2;

L: if c1==1 && turn==2
 then go to L

 < critical section>
c2=0;

23

N-process Mutual Exclusion
Lamport’s Bakery Algorithm

Process i

choosing[i] = 1;
num[i] = max(num[0], …, num[N-1]) + 1;
choosing[i] = 0;

for(j = 0; j < N; j++) {
while(choosing[j]);
while(num[j] &&
 ((num[j] < num[i]) ||
 (num[j] == num[i] && j < i)));

}

num[i] = 0;

Initially num[j] = 0, for all j
Entry Code

Exit Code

24

symmetric
• All memory is equally far
 away from all processors
• Any processor can do any I/O
 (set up a DMA transfer)

Symmetric Multiprocessors

Memory
I/O controller

Graphics
output

CPU-Memory bus

bridge

Processor

I/O controller I/O controller

I/O bus

Networks

Processor

25

Multidrop Memory Bus

Control

Address

Data

Clock

Processor 1 Processor 2
Main

Memory

Arbitration

26

Pipelined Memory Bus

Control

Address

Data

Clock

Processor 1 Processor 2
Main

Memory

Arbitration

27

Pipelined Memory Bus

28

Control

Address

Data

Clock

Processor 1 Processor 2
Main

Memory

LD

0x1234abcd

0xDA7E0000

Arbitration

P1

Memory Coherence in SMPs

Suppose CPU-1 updates A to 200.
 write-back: memory and cache-2 have stale values
 write-through: cache-2 has a stale value

Do these stale values matter?
What is the view of shared memory for programming?

cache-1 A 100

CPU-Memory bus

CPU-1 CPU-2

cache-2 A 100

memory A 100

29

Write-back Caches & SC

• T1 is executed

prog T2
LD Y, R1
ST R1, Y’
LD X, R2
ST R2, X’

 prog T1
 ST 1, X
 ST 11, Y

cache-2 cache-1 memory
 X = 0
 Y =10
 X’=
 Y’=

 X= 1
 Y=11

 Y =
 Y’=
 X =
 X’=

• cache-1 writes back Y
 X = 0
 Y =11
 X’=
 Y’=

 X= 1
 Y=11

 Y =
 Y’=
 X =
 X’=

 X = 1
 Y =11
 X’=
 Y’=

 X= 1
 Y=11

 Y = 11
 Y’= 11
 X = 0
 X’= 0

• cache-1 writes back X

 X = 0
 Y =11
 X’=
 Y’=

 X= 1
 Y=11

 Y = 11
 Y’= 11
 X = 0
 X’= 0

• T2 executed

 X = 1
 Y =11
 X’= 0
 Y’=11

 X= 1
 Y=11

 Y =11
 Y’=11
 X = 0
 X’= 0

• cache-2 writes back
 X’ & Y’

30

Write-through Caches & SC
cache-2
 Y =
 Y’=
 X = 0
 X’=

memory
 X = 0
 Y =10
 X’=
 Y’=

cache-1
 X= 0
 Y=10

prog T2
LD Y, R1
ST Y’, R1
LD X, R2
ST X’,R2

 prog T1
 ST 1, X
 ST 11, Y

Write-through caches don’t preserve
sequential consistency either

• T1 executed

 Y =
 Y’=
 X = 0
 X’=

 X = 1
 Y =11
 X’=
 Y’=

 X= 1
 Y=11

• T2 executed

 Y = 11
 Y’= 11
 X = 0
 X’= 0

 X = 1
 Y =11
 X’= 0
 Y’=11

 X= 1
 Y=11

31

Cache Coherence vs.
Memory Consistency

• A cache coherence protocol ensures that all writes by
one processor are eventually visible to other
processors, for one memory address
– i.e., updates are not lost

• A memory consistency model gives the rules on when a
write by one processor can be observed by a read on
another, across different addresses
– Equivalently, what values can be seen by a load

• A cache coherence protocol is not enough to ensure
sequential consistency
– But if sequentially consistent, then caches must be

coherent

• Combination of cache coherence protocol plus
processor memory reorder buffer implements a given
machine’s memory consistency model

32

Warmup: Parallel I/O

 (DMA stands for “Direct Memory Access”, means the I/O device
can read/write memory autonomous from the CPU)

Either Cache or DMA can
be the Bus Master and
effect transfers

 DISK

 DMA

Physical
Memory

Proc.

R/W

Data (D) Cache

Address (A)

A

D

R/W

Page transfers
occur while the
Processor is running

Memory
 Bus

33

Problems with Parallel I/O

Memory Disk: Physical memory may be
 stale if cache copy is dirty

Disk Memory: Cache may hold stale data and not
 see memory writes

 DISK

 DMA

Physical
Memory

Proc.
Cache

Memory
 Bus

Cached portions
 of page

 DMA transfers

34

Snoopy Cache Goodman & Ravishankar 1983

• Idea: Have cache watch (or snoop upon) DMA
transfers, and then “do the right thing”

• Snoopy cache tags are dual-ported

 Proc.

 Cache

Snoopy read port
attached to Memory
Bus

 Data
(lines)

Tags and
 State

A

D

R/W

Used to drive Memory Bus
when Cache is Bus Master

A

R/W

35

Shared Memory Multiprocessor

 Use snoopy mechanism to keep all processors’ view of
memory coherent

P1

P2

P3

Snoopy
 Cache

DMA

Physical
 Memory

Memory
 Bus

Snoopy
 Cache

Snoopy
 Cache

 DISKS

36

Update(Broadcast) vs. Invalidate
Snoopy Cache Coherence Protocols

• Write Update (Broadcast)

– Writes are broadcast and update all other cache
copies

• Write Invalidate

– Writes invalidate all other cache copies

37

Write Update (Broadcast) Protocols

write miss:
Broadcast on bus, other processors update
copies (in place)

read miss:

Memory is always up to date

38

Write Invalidate Protocols

write miss:
the address is invalidated in all other
caches before the write is performed

read miss:

if a dirty copy is found in some cache, a write-
back is performed before the memory is read

39

Cache State Transition Diagram
The MSI protocol

M

S I

M: Modified
S: Shared
 I: Invalid

Each cache line has state bits

Address tag

state
 bits Write miss

(P1 gets line from memory)

Other processor
intent to write
(P1 writes back)

 Read miss
(P1 gets line from memory)

Other processor
intent to write

Read by any
 processor

P1 reads
or writes

Cache state in
processor P1

Other processor reads
(P1 writes back)

40

Two Processor Example
(Reading and writing the same cache line)

M

S I

Write miss

 Read
 miss

P2 intent to write

P2 reads,
P1 writes back

P1 reads
or writes

P2 intent to write

P1

M

S I

Write miss

 Read
 miss

P1 intent to write

P1 reads,
P2 writes back

P2 reads
or writes

P1 intent to write

P2

P1 reads

P1 writes

P2 reads
P2 writes

P1 writes

P2 writes

P1 reads

P1 writes

41

Observation

• If a line is in the M state then no other cache can have a
copy of the line!
– Memory stays coherent, multiple differing copies cannot exist

M

S I

Write miss

Other processor
intent to write

 Read
 miss

Other processor
intent to write

Read by any
 processor

P1 reads
or writes

Other processor reads
P1 writes back

42

MESI: An Enhanced MSI protocol
 increased performance for private data (Illinois Protocol)

M E

S I

M: Modified Exclusive
E: Exclusive but unmodified
S: Shared
 I: Invalid

Each cache line has a tag

Address tag

state
 bits

Write miss

Other processor
intent to write

Read miss,
shared

Other processor
intent to write

P1 write

Read by any
 processor

Other processor reads

P1 writes back

P1 read
P1 write
or read

Cache state in
processor P1

P1 intent
to write

Read miss,
not shared Other

processor
reads

Other processor
intent to write,
P1 writes back

43

MOESI (Used in AMD Opteron)

M E

S I

M: Modified Exclusive
O: Owned
E: Exclusive but unmodified
S: Shared
 I: Invalid

Each cache line has a tag

Address tag

state
 bits

Write miss

Other processor
intent to write

Read miss,
shared

Other processor
intent to write

P1 write

Read by any
 processor

Other processor reads

P1 tracks write back

P1 read
P1 write
or read

Cache state in
processor P1

P1 intent
to write

Read miss,
not shared Other

processor
reads

Other processor
intent to write,
P1 writes back

44
O

P1 write

Read by any
 processor

MESIF (Used by Intel Core i7)

M E

S/F I

M: Modified Exclusive
E: Exclusive but unmodified
S: Shared
 I: Invalid
F: Forward

Each cache line has a tag

Address tag

state
 bits

Write miss

Other processor
intent to write

Read miss,
shared

Other processor
intent to write

P1 write

Read by any
 processor

Other processor reads

P1 writes back

P1 read
P1 write
or read

Cache state in
processor P1

P1 intent
to write

Read miss,
not shared Other

processor
reads

Other processor
intent to write,
P1 writes back

45

Scalability Limitations of Snooping

• Caches
– Bandwidth into caches

– Tags need to be dual ported or steal cycles for
snoops

– Need to invalidate all the way to L1 cache

• Bus
– Bandwidth

– Occupancy (As number of cores grows, atomically
utilizing bus becomes a challenge)

46

47

False Sharing

state blk addr data0 data1 ... dataN

A cache block contains more than one word

Cache-coherence is done at the block-level and
not word-level

Suppose M1 writes wordi and M2 writes wordk and
both words have the same block address.

What can happen?

Acknowledgements

• These slides contain material developed and copyright by:
– Arvind (MIT)
– Krste Asanovic (MIT/UCB)
– Joel Emer (Intel/MIT)
– James Hoe (CMU)
– John Kubiatowicz (UCB)
– David Patterson (UCB)
– Christopher Batten (Cornell)

• MIT material derived from course 6.823
• UCB material derived from course CS252 & CS152
• Cornell material derived from course ECE 4750

48

Blackboard Example: Sequential
Consistency

 Valid Not Valid
P1 P2 1 1 5 5
1 5 2 2 6 1
2 6 5 3 7 3
3 7 3 4 1 2
4 8 6 5 2 4
 7 6 3 6
 8 7 4 7
 4 8 8 8

49

Analysis of Dekker’s Algorithm
... Process 1
c1=1;
turn = 1;

L: if c2=1 & turn=1
 then go to L

 < critical section>
c1=0;

... Process 2
c2=1;
turn = 2;

L: if c1=1 & turn=2
 then go to L

 < critical section>
c2=0;

S
c
e
n
a
ri
o
 1

... Process 1
c1=1;
turn = 1;

L: if c2=1 & turn=1
 then go to L

 < critical section>
c1=0;

... Process 2
c2=1;
turn = 2;

L: if c1=1 & turn=2
 then go to L

 < critical section>
c2=0;

S
c
e
n
a
ri
o
 2

50

Copyright © 2013 David Wentzlaff

51

