
Computer Architecture
ELE 475 / COS 475

Slide Deck 11: Vector, SIMD, and GPUs

David Wentzlaff

Department of Electrical Engineering

Princeton University

1

Agenda

• Vector Processors

• Single Instruction Multiple Data (SIMD)
Instruction Set Extensions

• Graphics Processing Units (GPU)

2

Vector Programming Model
Scalar Registers

r0

r15
Vector Registers

v0

v15

[0] [1] [2] [VLRMAX-1]

VLR Vector Length Register

3

Vector Programming Model

+ + + + + +

[0] [1] [VLR-1]

Vector Arithmetic
Instructions
ADDVV V3, V1, V2 V3

V2
V1

Scalar Registers

r0

r15
Vector Registers

v0

v15

[0] [1] [2] [VLRMAX-1]

VLR Vector Length Register

4

Vector Programming Model

+ + + + + +

[0] [1] [VLR-1]

Vector Arithmetic
Instructions
ADDVV V3, V1, V2 V3

V2
V1

Scalar Registers

r0

r15
Vector Registers

v0

v15

[0] [1] [2] [VLRMAX-1]

VLR Vector Length Register

V1
Vector Load and
Store Instructions
LV v1, r1, r2

Base, r1 Stride, r2
Memory

Vector Register

5

Vector Code Element-by-Element
Multiplication

C code
for (i=0; i<64; i++)
 C[i] = A[i] * B[i];

Scalar Assembly Code
 LI R4, 64
loop:
 L.D F0, 0(R1)
 L.D F2, 0(R2)
 MUL.D F4, F2, F0
 S.D F4, 0(R3)
 DADDIU R1, 8
 DADDIU R2, 8
 DADDIU R3, 8
 DSUBIU R4, 1
 BNEZ R4, loop

Vector Assembly Code
 LI VLR, 64
 LV V1, R1
 LV V2, R2
 MULVV.D V3, V1, V2
 SV V3, R3

6

Vector Arithmetic Execution
• Use deep pipeline (=> fast clock) to

execute element operations

• Simplifies control of deep pipeline
because elements in vector are
independent

• no data hazards!

• no bypassing needed

V1 V2 V3

V3 <- V1 * V2

Six stage multiply pipeline

7

Interleaved Vector Memory System

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Base Stride
Vector Registers

Memory Banks

Address
Generator

Cray-1, 16 banks, 4 cycle bank busy time, 12 cycle latency
• Bank busy time: Time before bank ready to accept next request

8

Example Vector Microarchitecture

F
X0
L0 L1 W

Y0 Y1 Y2 Y3

D
S0

VRF

S1

SRF

Commit Point

VLR

9

R

Basic Vector Execution

VLR = 4

LV V2, R2 F D R L0 L1 W

 R L0 L1 W

 R L0 L1 W

 R L0 L1 W

MULVV.D V3, V1, V2 F D D D D D D D R Y0 Y1 Y2 Y3 W

 R Y0 Y1 Y2 Y3 W

 R Y0 Y1 Y2 Y3 W

 R Y0 Y1 Y2 Y3 W

SV V3, R3 F F F F F F F D D D D D D D D D R S0 S1 W

 R S0 S1 W

 R S0 S1 W

 R S0 S1 W

C code
for (i=0; i<4; i++)
 C[i] = A[i] * B[i];

Vector Assembly Code
 LI VLR, 4
 LV V1, R1
 LV V2, R2
 MULVV.D V3, V1, V2
 SV V3, R3

10

Vector Instruction Parallelism

• Can overlap execution of multiple vector instructions
– example machine has 32 elements per vector register and

8 lanes

 Load Unit Multiply Unit Add Unit

time

Instruction
issue

11

Vector Instruction Parallelism

• Can overlap execution of multiple vector instructions
– example machine has 32 elements per vector register and

8 lanes

load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction
issue

Complete 24 operations/cycle while issuing 1 short instruction/cycle 12

Vector Chaining

• Vector version of register bypassing
– introduced with Cray-1

LV V1
MULVV V3,V1,v2
ADDVV V5,V3, v4

13

Vector Chaining

• Vector version of register bypassing
– introduced with Cray-1

Memory

V1

Load
Unit

Mult.

V2 V3

Chain

Add

V4 V5

Chain

LV V1
MULVV V3,V1,v2
ADDVV V5,V3, v4

14

Vector Chaining Advantage

• Without chaining, must wait for last element of result to be
written before starting dependent instruction

• With chaining, can start dependent instruction as soon as first
result appears

Load

Mul

Add Time

Load

Mul

Add

15

Chaining (Register File) Vector
Execution

VLR = 4

LV V2, R2 F D R L0 L1 W

 R L0 L1 W

 R L0 L1 W

 R L0 L1 W

MULVV.D V3, V1, V2 F D D D D R Y0 Y1 Y2 Y3 W

 R Y0 Y1 Y2 Y3 W

 R Y0 Y1 Y2 Y3 W

 R Y0 Y1 Y2 Y3 W

SV V3, R3 F F F F D D D D D D R S0 S1 W

 R S0 S1 W

 R S0 S1 W

 R S0 S1 W

C code
for (i=0; i<4; i++)
 C[i] = A[i] * B[i];

Vector Assembly Code
 LI VLR, 4
 LV V1, R1
 LV V2, R2
 MULVV.D V3, V1, V2
 SV V3, R3

16

Chaining (Bypass Network) Vector
Execution

VLR = 4

LV V2, R2 F D R L0 L1 W

 R L0 L1 W

 R L0 L1 W

 R L0 L1 W

MULVV.D V3, V1, V2 F D D D D R Y0 Y1 Y2 Y3 W

 R Y0 Y1 Y2 Y3 W

 R Y0 Y1 Y2 Y3 W

 R Y0 Y1 Y2 Y3 W

SV V3, R3 F F F F D D D D D D R S0 S1 W

 R S0 S1 W

 R S0 S1 W

 R S0 S1 W

C code
for (i=0; i<4; i++)
 C[i] = A[i] * B[i];

Vector Assembly Code
 LI VLR, 4
 LV V1, R1
 LV V2, R2
 MULVV.D V3, V1, V2
 SV V3, R3

17

Chaining (Bypass Network) Vector
Execution and More RF Ports

VLR = 4

LV V2, R2 F D R L0 L1 W

 R L0 L1 W

 R L0 L1 W

 R L0 L1 W

MULVV.D V3, V1, V2 F D D R Y0 Y1 Y2 Y3 W

 R Y0 Y1 Y2 Y3 W

 R Y0 Y1 Y2 Y3 W

 R Y0 Y1 Y2 Y3 W

SV V3, R3 F F D D D D R S0 S1 W

 R S0 S1 W

 R S0 S1 W

 R S0 S1 W

C code
for (i=0; i<4; i++)
 C[i] = A[i] * B[i];

Vector Assembly Code
 LI VLR, 4
 LV V1, R1
 LV V2, R2
 MULVV.D V3, V1, V2
 SV V3, R3

18

Chaining (Bypass Network) Vector
Execution and More RF Ports

VLR = 8

LV V2, R2 F D R L0 L1 W

 R L0 L1 W

 R L0 L1 W

 R L0 L1 W

 R L0 L1 W

 R L0 L1 W

 R L0 L1 W

 R L0 L1 W

MULVV.D V3, V1, V2 F D D R Y0 Y1 Y2 Y3 W

 R Y0 Y1 Y2 Y3 W

 R Y0 Y1 Y2 Y3 W

 R Y0 Y1 Y2 Y3 W

 R Y0 Y1 Y2 Y3 W

 R Y0 Y1 Y2 Y3 W

 R Y0 Y1 Y2 Y3 W

 R Y0 Y1 Y2 Y3 W

SV V3, R3 F F D D D D R S0 S1 W

 R S0 S1 W

 R S0 S1 W

 R S0 S1 W

 R S0 S1 W

 R S0 S1 W

 R S0 S1 W

 R S0 S1 W

19

Vector Stripmining
Problem: Vector registers have finite length
Solution: Break loops into pieces that fit in registers, “Stripmining”

20

Vector Stripmining

 ANDI R1, N, 63 # N mod 64

 MTC1 VLR, R1 # Do remainder

loop:

 LV V1, RA

 LV V2, RB

 MULVV.D V3, V1, V2

 SV V3, RC

 DSLL R2, R1, 3 # Multiply by 8

 DADDU RA, RA, R2 # Bump pointer

 DADDU RB, RB, R2

 DADDU RC, RC, R2

 DSUBU N, N, R1 # Subtract elements

 LI R1, 64

 MTC1 VLR, R1 # Reset full length

 BGTZ N, loop # Any more to do?

for (i=0; i<N; i++)

 C[i] = A[i]*B[i];

+

+

+

A B C

64 elements

Remainder

Problem: Vector registers have finite length
Solution: Break loops into pieces that fit in registers, “Stripmining”

21

Vector Stripmining
VLR = 4

LV F D R L0 L1 W

 R L0 L1 W

 R L0 L1 W

 R L0 L1 W

LV V2, R2 F D R L0 L1 W

 R L0 L1 W

 R L0 L1 W

 R L0 L1 W

MULVV.D V3, V1, V2 F D D R Y0 Y1 Y2 Y3 W

 R Y0 Y1 Y2 Y3 W

 R Y0 Y1 Y2 Y3 W

 R Y0 Y1 Y2 Y3 W

SV V3, R3 F F D D D D R S0 S1 W

 R S0 S1 W

 R S0 S1 W

 R S0 S1 W

DSLL R2, R1, 3 F F F F D R X W

DADDU RA, RA, R2 F D R X W

DADDU RB, RB, R2 F D R X W

DADDU RC, RC, R2 F D R X W

DSUBU N, N, R1 F D R X W

LI R1, 64 F D R X W

MTC1 VLR, R1 F D R X W

BGTZ N, loop F D R X W

22

Vector Instruction Execution

MULVV C,A,B

23

Vector Instruction Execution

MULVV C,A,B

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

24

Vector Instruction Execution

MULVV C,A,B

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

25

Two Lane Vector Microarchitecture

F R
X0
L0 L1

W Y0 Y1 Y2 Y3

D
S0

VRF

S1

SRF

Commit Point

VLR

X0
L0 L1

Y0 Y1 Y2 Y3

S0 S1

26

Vector Stripmining 2-Lanes
VLR = 4

LV F D R L0 L1 W

 R L0 L1 W

 R L0 L1 W

 R L0 L1 W

LV F D D R L0 L1 W

 R L0 L1 W

 R L0 L1 W

 R L0 L1 W

MULVV.D F F D D R Y0 Y1 Y2 Y3 W

 R Y0 Y1 Y2 Y3 W

 R Y0 Y1 Y2 Y3 W

 R Y0 Y1 Y2 Y3 W

SV F F D D D D R S0 S1 W

 R S0 S1 W

 R S0 S1 W

 R S0 S1 W

DSLL R2, R1, 3 F F F F D R X W

DADDU RA, RA, R2 F D R X W

DADDU RB, RB, R2 F D R X W

DADDU RC, RC, R2 F D R X W

DSUBU N, N, R1 F D R X W

LI R1, 64 F D R X W

MTC1 VLR, R1 F D R X W

BGTZ N, loop F D R X W

27

Vector Unit Structure

Vector
Registers

Memory Subsystem

Elements 0,
4, 8, …

Elements 1,
5, 9, …

Elements 2,
6, 10, …

Elements 3,
7, 11, …

28

Vector Unit Structure

Lane

Vector
Registers

Memory Subsystem

Elements 0,
4, 8, …

Elements 1,
5, 9, …

Elements 2,
6, 10, …

Elements 3,
7, 11, …

29

Vector Unit Structure

Lane

Functional Unit

Vector
Registers

Memory Subsystem

Elements 0,
4, 8, …

Elements 1,
5, 9, …

Elements 2,
6, 10, …

Elements 3,
7, 11, …

30

T0 Vector Microprocessor (UCB/ICSI, 1995)

Lane

Photo of Berkeley T0, © University of California (Berkeley)
http://www1.icsi.berkeley.edu/Speech/spert/t0die.jpg

31

T0 Vector Microprocessor (UCB/ICSI, 1995)

Lane Vector register
elements striped
over lanes

[0]
[8]
[16]
[24]

[1]
[9]
[17]
[25]

[2]
[10]
[18]
[26]

[3]
[11]
[19]
[27]

[4]
[12]
[20]
[28]

[5]
[13]
[21]
[29]

[6]
[14]
[22]
[30]

[7]
[15]
[23]
[31]

Photo of Berkeley T0, © University of California (Berkeley)
http://www1.icsi.berkeley.edu/Speech/spert/t0die.jpg

32

Vector Instruction Set Advantages

• Compact
– one short instruction encodes N operations

• Expressive, tells hardware that these N operations:
– are independent
– use the same functional unit
– access disjoint registers
– access registers in same pattern as previous instructions
– access a contiguous block of memory (unit-stride

load/store)
– access memory in a known pattern (strided load/store)

• Scalable
– can run same code on more parallel pipelines (lanes)

33

Automatic Code Vectorization
for (i=0; i < N; i++)

 C[i] = A[i] * B[i];

34

Automatic Code Vectorization
for (i=0; i < N; i++)

 C[i] = A[i] * B[i];

load

load

mul

store

load

load

mul

store

Iter. 1

Iter. 2

Scalar Sequential Code

35

Automatic Code Vectorization
for (i=0; i < N; i++)

 C[i] = A[i] * B[i];

load

load

mul

store

load

load

mul

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vector Instruction

load

load

mul

store

load

load

mul

store

Iter.
1

Iter.
2

Vectorized Code

T
im

e

36

Automatic Code Vectorization
for (i=0; i < N; i++)

 C[i] = A[i] * B[i];

load

load

mul

store

load

load

mul

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a massive compile-time
reordering of operation sequencing
 requires extensive loop dependence analysis

Vector Instruction

load

load

mul

store

load

load

mul

store

Iter.
1

Iter.
2

Vectorized Code

T
im

e

37

Vector Conditional Execution
Problem: Want to vectorize loops with conditional code:

for (i=0; i<N; i++)

 if (A[i]>0) then

 A[i] = B[i];

Solution: Add vector mask (or flag) registers

– vector version of predicate registers, 1 bit per element

…and maskable vector instructions
– vector operation becomes NOP at elements where mask bit is clear

Code example:

CVM # Turn on all elements

LV VA, RA # Load entire A vector

SGTVS.D VA, F0 # Set bits in mask register where A>0

LV VA, RB # Load B vector into A under mask

SV VA, RA # Store A back to memory under mask

38

Masked Vector Instructions

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data port Write Enable

A[7] B[7] M[7]=1

Simple Implementation

– execute all N operations, turn off

 result writeback according to mask

39

Masked Vector Instructions

C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

Density-Time Implementation

– scan mask vector and only execute
elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data port Write Enable

A[7] B[7] M[7]=1

Simple Implementation

– execute all N operations, turn off

 result writeback according to mask

40

Vector Reductions

Problem: Loop-carried dependence on reduction variables

sum = 0;

for (i=0; i<N; i++)

 sum += A[i]; # Loop-carried dependence on sum

Solution: Re-associate operations if possible, use binary tree to perform reduction

Rearrange as:

sum[0:VL-1] = 0 # Vector of VL partial sums

for(i=0; i<N; i+=VL) # Stripmine VL-sized chunks

 sum[0:VL-1] += A[i:i+VL-1]; # Vector sum

Now have VL partial sums in one vector register

do {

 VL = VL/2; # Halve vector length

 sum[0:VL-1] += sum[VL:2*VL-1] # Halve no. of partials

} while (VL>1)

41

Vector Scatter/Gather

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)

 A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)
LV vD, rD # Load indices in D vector

LVI vC, rC, vD # Load indirect from rC base

LV vB, rB # Load B vector

ADDV.D vA,vB,vC # Do add

SV vA, rA # Store result

42

Vector Supercomputers

Epitomized by Cray-1, 1976:

• Scalar Unit
– Load/Store Architecture

• Vector Extension
– Vector Registers
– Vector Instructions

• Implementation
– Hardwired Control
– Highly Pipelined Functional

Units
– Interleaved Memory System
– No Data Caches
– No Virtual Memory

Cray 1 at The Deutsches Museum
Image Credit: Clemens Pfeiffer
http://en.wikipedia.org/wiki/File:Cray-1-deutsches-museum.jpg

43

Cray-1 (1976)

Single Port
Memory

16 banks of 64-
bit words
+
8-bit SECDED

80MW/sec data
load/store

320MW/sec
instruction
buffer refill

4 Instruction Buffers

64-bitx16 NIP

LIP

CIP

(A0)

((Ah) + j k m)

64
T Regs

(A0)

((Ah) + j k m)

64
B Regs

S0
S1
S2
S3
S4
S5
S6
S7

A0
A1
A2
A3
A4
A5
A6
A7

Si

Tjk

Ai

Bjk

FP Add

FP Mul

FP Recip

Int Add

Int Logic

Int Shift

Pop Cnt

Sj

Si

Sk

Addr Add

Addr Mul

Aj

Ai

Ak

memory bank cycle 50 ns processor cycle 12.5 ns (80MHz)

V0
V1
V2
V3
V4
V5
V6
V7

Vk

Vj

Vi V. Mask

V. Length 64 Element Vector
Registers

44

Agenda

• Vector Processors

• Single Instruction Multiple Data (SIMD)
Instruction Set Extensions

• Graphics Processing Units (GPU)

45

SIMD / Multimedia Extensions

• Very short vectors added to existing ISAs for microprocessors

• Use existing 64-bit registers split into 2x32b or 4x16b or 8x8b

– This concept first used on Lincoln Labs TX-2 computer in 1957, with 36b
datapath split into 2x18b or 4x9b

– Newer designs have 128-bit registers (PowerPC Altivec, Intel SSE2/3/4)
or 256-bit registers (Intel AVX)

• Single instruction operates on all elements within register

16b 16b 16b 16b

32b 32b

64b

8b 8b 8b 8b 8b 8b 8b 8b

16b 16b 16b 16b

16b 16b 16b 16b

16b 16b 16b 16b

+ + + + 4x16b adds

46

Multimedia Extensions versus Vectors

• Limited instruction set:
– no vector length control

– no strided load/store or scatter/gather

– unit-stride loads must be aligned to 64/128-bit boundary

• Limited vector register length:
– requires superscalar dispatch to keep multiply/add/load units busy

– loop unrolling to hide latencies increases register pressure

• Trend towards fuller vector support in
microprocessors
– Better support for misaligned memory accesses

– Support of double-precision (64-bit floating-point)

– New Intel AVX spec (announced April 2008), 256b vector registers
(expandable up to 1024b)

47

Agenda

• Vector Processors

• Single Instruction Multiple Data (SIMD)
Instruction Set Extensions

• Graphics Processing Units (GPU)

48

Graphics Processing Units (GPUs)

• Original GPUs were dedicated fixed-function devices for
generating 3D graphics (mid-late 1990s) including high-
performance floating-point units
– Provide workstation-like graphics for PCs
– User could configure graphics pipeline, but not really program it

• Over time, more programmability added (2001-2005)
– E.g., New language Cg for writing small programs run on each

vertex or each pixel, also Windows DirectX variants
– Massively parallel (millions of vertices or pixels per frame) but

very constrained programming model

• Some users noticed they could do general-purpose
computation by mapping input and output data to images,
and computation to vertex and pixel shading computations
– Incredibly difficult programming model as had to use graphics

pipeline model for general computation
49

General Purpose GPUs (GPGPUs)

• In 2006, Nvidia introduced GeForce 8800 GPU supporting a
new programming language: CUDA
– “Compute Unified Device Architecture”
– Subsequently, broader industry pushing for OpenCL, a vendor-

neutral version of same ideas.

• Idea: Take advantage of GPU computational performance
and memory bandwidth to accelerate some kernels for
general-purpose computing

• Attached processor model: Host CPU issues data-parallel
kernels to GP-GPU for execution

• This lecture has a simplified version of Nvidia CUDA-style
model and only considers GPU execution for computational
kernels, not graphics

50

Simplified CUDA Programming Model

• Computation performed by a very large number of
independent small scalar threads (CUDA threads or
microthreads) grouped into thread blocks.

// C version of DAXPY loop.
void daxpy(int n, double a, double*x, double*y)
{ for (int i=0; i<n; i++)
 y[i] = a*x[i] + y[i]; }

// CUDA version.
__host__ // Piece run on host processor.
int nblocks = (n+255)/256; // 256 CUDA threads/block
daxpy<<<nblocks,256>>>(n,2.0,x,y);

__device__ // Piece run on GPGPU.
void daxpy(int n, double a, double*x, double*y)
{ int i = blockIdx.x*blockDim.x + threadId.x;
 if (i<n) y[i]=a*x[i]+y[i]; }

51

“Single Instruction, Multiple Thread”
• GPUs use a SIMT model, where individual scalar

instruction streams for each CUDA thread are grouped
together for SIMD execution on hardware (Nvidia
groups 32 CUDA threads into a warp)

µT0 µT1 µT2 µT3 µT4 µT5 µT6 µT7

ld x
mul a
ld y
add
st y

Scalar
instruction
stream

SIMD execution across warp

52

GPU

Hardware Execution Model

• GPU is built from multiple parallel cores, each core contains a
multithreaded SIMD processor with multiple lanes but with
no scalar processor

• CPU sends whole “grid” over to GPU, which distributes thread
blocks among cores (each thread block executes on one core)
– Programmer unaware of number of cores

Core 0

Lane 0

Lane 1

Lane 15

Core 1

Lane 0

Lane 1

Lane 15

Core 15

Lane 0

Lane 1

Lane 15

GPU Memory

CPU

CPU Memory

53

“Single Instruction, Multiple Thread”
• GPUs use a SIMT model, where individual scalar

instruction streams for each CUDA thread are grouped
together for SIMD execution on hardware (Nvidia
groups 32 CUDA threads into a warp)

µT0 µT1 µT2 µT3 µT4 µT5 µT6 µT7

ld x
mul a
ld y
add
st y

Scalar
instruction
stream

SIMD execution across warp

54

Implications of SIMT Model

• All “vector” loads and stores are scatter-gather,
as individual µthreads perform scalar loads and
stores
– GPU adds hardware to dynamically coalesce individual

µthread loads and stores to mimic vector loads and
stores

• Every µthread has to perform stripmining
calculations redundantly (“am I active?”) as there
is no scalar processor equivalent

• If divergent control flow, need predicates

 55

GPGPUs are Multithreaded SIMD

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

Image Credit: NVIDIA 56

Nvidia Fermi GF100 GPU

[Wittenbrink, Kilgariff, and Prabhu, Hot Chips 2010] Image Credit: NVIDIA
57

Fermi “Streaming
Multiprocessor” Core

[Wittenbrink, Kilgariff, and Prabhu, Hot Chips 2010]

Image Credit: NVIDIA

58

Acknowledgements

• These slides contain material developed and copyright by:
– Arvind (MIT)
– Krste Asanovic (MIT/UCB)
– Joel Emer (Intel/MIT)
– James Hoe (CMU)
– John Kubiatowicz (UCB)
– David Patterson (UCB)
– Christopher Batten (Cornell)

• MIT material derived from course 6.823
• UCB material derived from course CS252 & CS152
• Cornell material derived from course ECE 4750

59

Copyright © 2013 David Wentzlaff

60

