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Agenda 

• Vector Processors 

• Single Instruction Multiple Data (SIMD) 
Instruction Set Extensions 

• Graphics Processing Units (GPU) 
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Vector Programming Model 
Scalar Registers 

r0 

r15 
Vector Registers 

v0 

v15 

[0] [1] [2] [VLRMAX-1] 

VLR Vector Length Register 
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Vector Programming Model 

+ + + + + + 

[0] [1] [VLR-1] 

Vector Arithmetic 
Instructions 
ADDVV V3, V1, V2 V3 

V2 
V1 

Scalar Registers 

r0 

r15 
Vector Registers 

v0 

v15 

[0] [1] [2] [VLRMAX-1] 

VLR Vector Length Register 
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Vector Programming Model 

+ + + + + + 

[0] [1] [VLR-1] 

Vector Arithmetic 
Instructions 
ADDVV V3, V1, V2 V3 

V2 
V1 

Scalar Registers 

r0 

r15 
Vector Registers 

v0 

v15 

[0] [1] [2] [VLRMAX-1] 

VLR Vector Length Register 

V1 
Vector Load and 
Store Instructions 
LV v1, r1, r2 

Base, r1 Stride, r2 
Memory 

Vector Register 
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Vector Code Element-by-Element 
Multiplication 

# C code 
for (i=0; i<64; i++) 
  C[i] = A[i] * B[i]; 

# Scalar Assembly Code 
  LI R4, 64 
loop: 
  L.D F0, 0(R1) 
  L.D F2, 0(R2) 
  MUL.D F4, F2, F0 
  S.D F4, 0(R3) 
  DADDIU R1, 8 
  DADDIU R2, 8 
  DADDIU R3, 8 
  DSUBIU R4, 1 
  BNEZ R4, loop 

# Vector Assembly Code 
  LI VLR, 64  
  LV V1, R1 
  LV V2, R2 
  MULVV.D V3, V1, V2 
  SV V3, R3 
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Vector Arithmetic Execution 
• Use deep pipeline (=> fast clock) to 

execute element operations 

• Simplifies control of deep pipeline 
because elements in vector are 
independent  

• no data hazards! 

• no bypassing needed  

V1 V2 V3 

V3 <- V1 * V2 

Six stage multiply pipeline 
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Interleaved Vector Memory System 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

+ 

Base Stride 
Vector Registers 

Memory Banks 

Address 
Generator 

Cray-1, 16 banks, 4 cycle bank busy time, 12 cycle latency 
• Bank busy time: Time before bank ready to accept next request 
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Example Vector Microarchitecture 

F 
X0 
L0 L1 W 

Y0 Y1 Y2 Y3 

D 
S0 

VRF 

S1 

SRF 

Commit Point 

VLR 
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Basic Vector Execution 

 

 

 

VLR = 4 

 

LV      V2, R2  F  D  R  L0 L1 W 

                         R  L0 L1 W 

                            R  L0 L1 W 

                               R  L0 L1 W 

MULVV.D V3, V1, V2 F  D  D  D  D  D  D  D  R  Y0 Y1 Y2 Y3 W 

                                              R  Y0 Y1 Y2 Y3 W 

                                                 R  Y0 Y1 Y2 Y3 W 

                                                    R  Y0 Y1 Y2 Y3 W 

SV      V3, R3        F  F  F  F  F  F  F  D  D  D  D  D  D  D  D  D  R  S0 S1 W 

                                                                         R  S0 S1 W 

                                                                            R  S0 S1 W 

                                                                               R  S0 S1 W 

 

# C code 
for (i=0; i<4; i++) 
  C[i] = A[i] * B[i]; 

# Vector Assembly Code 
  LI VLR, 4  
  LV V1, R1 
  LV V2, R2 
  MULVV.D V3, V1, V2 
  SV V3, R3 
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Vector Instruction Parallelism 

• Can overlap execution of multiple vector instructions 
– example machine has 32 elements per vector register and 

8 lanes 

 Load Unit Multiply Unit Add Unit 

time 

Instruction 
issue 
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Vector Instruction Parallelism 

• Can overlap execution of multiple vector instructions 
– example machine has 32 elements per vector register and 

8 lanes 

 

load 

load 
mul 

mul 

add 

add 

Load Unit Multiply Unit Add Unit 

time 

Instruction 
issue 

Complete 24 operations/cycle while issuing 1 short instruction/cycle 12 



Vector Chaining 

• Vector version of register bypassing 
– introduced with Cray-1 

 

LV    V1 
MULVV V3,V1,v2 
ADDVV V5,V3, v4 
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Vector Chaining 

• Vector version of register bypassing 
– introduced with Cray-1 

 

Memory 

V1 

Load 
Unit 

Mult. 

V2 V3 

Chain 

Add 

V4 V5 

Chain 

LV    V1 
MULVV V3,V1,v2 
ADDVV V5,V3, v4 
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Vector Chaining Advantage 

• Without chaining, must wait for last element of result to be 
written before starting dependent instruction 

 

 

 

 

• With chaining, can start dependent instruction as soon as first 
result appears 

 

Load 

Mul 

Add Time 

Load 

Mul 

Add 
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Chaining (Register File) Vector 
Execution 

 

 

 

VLR = 4 

 

LV      V2, R2  F  D  R  L0 L1 W 

                         R  L0 L1 W 

                            R  L0 L1 W 

                               R  L0 L1 W 

MULVV.D V3, V1, V2 F  D  D  D  D  R  Y0 Y1 Y2 Y3 W 

                                     R  Y0 Y1 Y2 Y3 W 

                                        R  Y0 Y1 Y2 Y3 W 

                                           R  Y0 Y1 Y2 Y3 W 

SV      V3, R3        F  F  F  F  D  D  D  D  D  D  R  S0 S1 W 

                                                       R  S0 S1 W 

                                                          R  S0 S1 W 

                                                             R  S0 S1 W 

 

# C code 
for (i=0; i<4; i++) 
  C[i] = A[i] * B[i]; 

# Vector Assembly Code 
  LI VLR, 4  
  LV V1, R1 
  LV V2, R2 
  MULVV.D V3, V1, V2 
  SV V3, R3 
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Chaining (Bypass Network) Vector 
Execution 

 

 

 

VLR = 4 

 

LV      V2, R2  F  D  R  L0 L1 W 

                         R  L0 L1 W 

                            R  L0 L1 W 

                               R  L0 L1 W 

MULVV.D V3, V1, V2 F  D  D  D  D  R  Y0 Y1 Y2 Y3 W 

                                     R  Y0 Y1 Y2 Y3 W 

                                        R  Y0 Y1 Y2 Y3 W 

                                           R  Y0 Y1 Y2 Y3 W 

SV      V3, R3        F  F  F  F  D  D  D  D  D  D  R  S0 S1 W 

                                                       R  S0 S1 W 

                                                          R  S0 S1 W 

                                                             R  S0 S1 W 

 

# C code 
for (i=0; i<4; i++) 
  C[i] = A[i] * B[i]; 

# Vector Assembly Code 
  LI VLR, 4  
  LV V1, R1 
  LV V2, R2 
  MULVV.D V3, V1, V2 
  SV V3, R3 
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Chaining (Bypass Network) Vector 
Execution and More RF Ports 

 

 

 

VLR = 4 

 

LV      V2, R2  F  D  R  L0 L1 W 

                         R  L0 L1 W 

                            R  L0 L1 W 

                               R  L0 L1 W 

MULVV.D V3, V1, V2 F  D  D  R  Y0 Y1 Y2 Y3 W 

                               R  Y0 Y1 Y2 Y3 W 

                                  R  Y0 Y1 Y2 Y3 W 

                                     R  Y0 Y1 Y2 Y3 W 

SV      V3, R3        F  F  D  D  D  D  R  S0 S1 W 

                                           R  S0 S1 W 

                                              R  S0 S1 W 

                                                 R  S0 S1 W 

 

# C code 
for (i=0; i<4; i++) 
  C[i] = A[i] * B[i]; 

# Vector Assembly Code 
  LI VLR, 4  
  LV V1, R1 
  LV V2, R2 
  MULVV.D V3, V1, V2 
  SV V3, R3 
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Chaining (Bypass Network) Vector 
Execution and More RF Ports 

VLR = 8 

LV      V2, R2  F  D  R  L0 L1 W 

                         R  L0 L1 W 

                            R  L0 L1 W 

                               R  L0 L1 W 

                                  R  L0 L1 W 

                                     R  L0 L1 W 

                                        R  L0 L1 W 

                                           R  L0 L1 W 

MULVV.D V3, V1, V2 F  D  D  R  Y0 Y1 Y2 Y3 W 

                               R  Y0 Y1 Y2 Y3 W 

                                  R  Y0 Y1 Y2 Y3 W 

                                     R  Y0 Y1 Y2 Y3 W 

                                        R  Y0 Y1 Y2 Y3 W 

                                           R  Y0 Y1 Y2 Y3 W 

                                              R  Y0 Y1 Y2 Y3 W 

                                                 R  Y0 Y1 Y2 Y3 W 

SV      V3, R3        F  F  D  D  D  D  R  S0 S1 W 

                                           R  S0 S1 W 

                                              R  S0 S1 W 

                                                 R  S0 S1 W 

                                                    R  S0 S1 W 

                                                       R  S0 S1 W 

                                                          R  S0 S1 W 

                                                             R  S0 S1 W 
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Vector Stripmining 
Problem: Vector registers have finite length 
Solution: Break loops into pieces that fit in registers, “Stripmining” 
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Vector Stripmining 

 ANDI R1, N, 63   # N mod 64 

 MTC1 VLR, R1     # Do remainder 

loop: 

 LV V1, RA 

 LV V2, RB 

 MULVV.D V3, V1, V2 

 SV V3, RC 

 DSLL R2, R1, 3 # Multiply by 8  

 DADDU RA, RA, R2 # Bump pointer 

 DADDU RB, RB, R2  

 DADDU RC, RC, R2 

 DSUBU N, N, R1 # Subtract elements 

 LI R1, 64 

 MTC1 VLR, R1   # Reset full length 

 BGTZ N, loop   # Any more to do? 

for (i=0; i<N; i++) 

    C[i] = A[i]*B[i]; 

+ 

+ 

+ 

A B C 

64 elements 

Remainder 

Problem: Vector registers have finite length 
Solution: Break loops into pieces that fit in registers, “Stripmining” 
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Vector Stripmining 
VLR = 4 

LV  F  D  R  L0 L1 W 

             R  L0 L1 W 

                R  L0 L1 W 

                   R  L0 L1 W 

LV      V2, R2  F  D  R  L0 L1 W 

                         R  L0 L1 W 

                            R  L0 L1 W 

                               R  L0 L1 W 

MULVV.D V3, V1, V2 F  D  D  R  Y0 Y1 Y2 Y3 W 

                               R  Y0 Y1 Y2 Y3 W 

                                  R  Y0 Y1 Y2 Y3 W 

                                     R  Y0 Y1 Y2 Y3 W 

SV      V3, R3        F  F  D  D  D  D  R  S0 S1 W 

                                           R  S0 S1 W 

                                              R  S0 S1 W 

                                                 R  S0 S1 W 

DSLL R2, R1, 3              F  F  F  F  D  R  X  W 

DADDU RA, RA, R2                        F  D  R  X  W 

DADDU RB, RB, R2                           F  D  R  X  W 

DADDU RC, RC, R2                              F  D  R  X  W 

DSUBU N, N, R1                                   F  D  R  X  W 

LI R1, 64                                           F  D  R  X  W 

MTC1 VLR, R1                                           F  D  R  X  W 

BGTZ N, loop                                              F  D  R  X  W 
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Vector Instruction Execution 

MULVV C,A,B 
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Vector Instruction Execution 

MULVV C,A,B 

C[1] 

C[2] 

C[0] 

A[3] B[3] 

A[4] B[4] 

A[5] B[5] 

A[6] B[6] 

Execution using 
one pipelined 
functional unit 
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Vector Instruction Execution 

MULVV C,A,B 

C[1] 

C[2] 

C[0] 

A[3] B[3] 

A[4] B[4] 

A[5] B[5] 

A[6] B[6] 

Execution using 
one pipelined 
functional unit 

C[4] 

C[8] 

C[0] 

A[12] B[12] 

A[16] B[16] 

A[20] B[20] 

A[24] B[24] 

C[5] 

C[9] 

C[1] 

A[13] B[13] 

A[17] B[17] 

A[21] B[21] 

A[25] B[25] 

C[6] 

C[10] 

C[2] 

A[14] B[14] 

A[18] B[18] 

A[22] B[22] 

A[26] B[26] 

C[7] 

C[11] 

C[3] 

A[15] B[15] 

A[19] B[19] 

A[23] B[23] 

A[27] B[27] 

Execution using 
four pipelined 
functional units 
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Two Lane Vector Microarchitecture 

F R 
X0 
L0 L1 

W Y0 Y1 Y2 Y3 

D 
S0 

VRF 

S1 

SRF 

Commit Point 

VLR 

X0 
L0 L1 

Y0 Y1 Y2 Y3 

S0 S1 
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Vector Stripmining 2-Lanes 
VLR = 4 

LV  F  D  R  L0 L1 W 

          R  L0 L1 W 

             R  L0 L1 W 

             R  L0 L1 W 

LV     F  D  D  R  L0 L1 W 

                R  L0 L1 W 

                   R  L0 L1 W 

                   R  L0 L1 W 

MULVV.D   F  F  D  D  R  Y0 Y1 Y2 Y3 W 

                      R  Y0 Y1 Y2 Y3 W 

                         R  Y0 Y1 Y2 Y3 W 

                         R  Y0 Y1 Y2 Y3 W 

SV              F  F  D  D  D  D  R  S0 S1 W 

                                  R  S0 S1 W 

                                     R  S0 S1 W 

                                     R  S0 S1 W 

DSLL R2, R1, 3              F  F  F  F  D  R  X  W 

DADDU RA, RA, R2                        F  D  R  X  W 

DADDU RB, RB, R2                           F  D  R  X  W 

DADDU RC, RC, R2                              F  D  R  X  W 

DSUBU N, N, R1                                   F  D  R  X  W 

LI R1, 64                                           F  D  R  X  W 

MTC1 VLR, R1                                           F  D  R  X  W 

BGTZ N, loop                                              F  D  R  X  W 

 

27 



Vector Unit Structure 

Vector 
Registers 

Memory Subsystem 

Elements 0, 
4, 8, … 

Elements 1, 
5, 9, … 

Elements 2, 
6, 10, … 

Elements 3, 
7, 11, … 
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Vector Unit Structure 

Lane 

Vector 
Registers 

Memory Subsystem 

Elements 0, 
4, 8, … 

Elements 1, 
5, 9, … 

Elements 2, 
6, 10, … 

Elements 3, 
7, 11, … 
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Vector Unit Structure 

Lane 

Functional Unit 

Vector 
Registers 

Memory Subsystem 

Elements 0, 
4, 8, … 

Elements 1, 
5, 9, … 

Elements 2, 
6, 10, … 

Elements 3, 
7, 11, … 
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T0 Vector Microprocessor (UCB/ICSI, 1995) 

Lane 

Photo of Berkeley T0, © University of California (Berkeley) 
http://www1.icsi.berkeley.edu/Speech/spert/t0die.jpg 
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T0 Vector Microprocessor (UCB/ICSI, 1995) 

Lane Vector register 
elements striped 
over lanes 

[0] 
[8] 
[16] 
[24] 

[1] 
[9] 
[17] 
[25] 

[2] 
[10] 
[18] 
[26] 

[3] 
[11] 
[19] 
[27] 

[4] 
[12] 
[20] 
[28] 

[5] 
[13] 
[21] 
[29] 

[6] 
[14] 
[22] 
[30] 

[7] 
[15] 
[23] 
[31] 

Photo of Berkeley T0, © University of California (Berkeley) 
http://www1.icsi.berkeley.edu/Speech/spert/t0die.jpg 
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Vector Instruction Set Advantages 

• Compact 
– one short instruction encodes N operations 

• Expressive, tells hardware that these N operations: 
– are independent 
– use the same functional unit 
– access disjoint registers 
– access registers in same pattern as previous instructions 
– access a contiguous block of memory (unit-stride 

load/store) 
– access memory in a known pattern (strided load/store)  

• Scalable 
– can run same code on more parallel pipelines (lanes) 
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Automatic Code Vectorization 
for (i=0; i < N; i++) 

    C[i] = A[i] * B[i]; 
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Automatic Code Vectorization 
for (i=0; i < N; i++) 

    C[i] = A[i] * B[i]; 

load 

load 

mul 

store 

load 

load 

mul 

store 

Iter. 1 

Iter. 2 

Scalar Sequential Code 
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Automatic Code Vectorization 
for (i=0; i < N; i++) 

    C[i] = A[i] * B[i]; 

load 

load 

mul 

store 

load 

load 

mul 

store 

Iter. 1 

Iter. 2 

Scalar Sequential Code 

Vector Instruction 

load 

load 

mul 

store 

load 

load 

mul 

store 

Iter. 
1 

Iter. 
2 

Vectorized Code 

T
im

e
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Automatic Code Vectorization 
for (i=0; i < N; i++) 

    C[i] = A[i] * B[i]; 

load 

load 

mul 

store 

load 

load 

mul 

store 

Iter. 1 

Iter. 2 

Scalar Sequential Code 

Vectorization is a massive compile-time 
reordering of operation sequencing 
 requires extensive loop dependence analysis 

Vector Instruction 

load 

load 

mul 

store 

load 

load 

mul 

store 

Iter. 
1 

Iter. 
2 

Vectorized Code 

T
im

e
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Vector Conditional Execution 
Problem: Want to vectorize loops with conditional code: 

for (i=0; i<N; i++) 

    if (A[i]>0) then 

        A[i] = B[i]; 

     
Solution: Add vector mask (or flag) registers 

– vector version of predicate registers, 1 bit per element 

…and maskable vector instructions 
– vector operation becomes NOP at elements where mask bit is clear 

Code example: 

CVM             # Turn on all elements  

LV VA, RA       # Load entire A vector 

SGTVS.D VA, F0  # Set bits in mask register where A>0 

LV VA, RB       # Load B vector into A under mask 

SV VA, RA       # Store A back to memory under mask 
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Masked Vector Instructions 

C[1] 

C[2] 

C[0] 

A[3] B[3] 

A[4] B[4] 

A[5] B[5] 

A[6] B[6] 

M[3]=0 

M[4]=1 

M[5]=1 

M[6]=0 

M[2]=0 

M[1]=1 

M[0]=0 

Write data port Write Enable 

A[7] B[7] M[7]=1 

Simple Implementation 

– execute all N operations, turn off  

     result writeback according to mask 
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Masked Vector Instructions 

C[4] 

C[5] 

C[1] 

Write data port 

A[7] B[7] 

M[3]=0 

M[4]=1 

M[5]=1 

M[6]=0 

M[2]=0 

M[1]=1 

M[0]=0 

M[7]=1 

Density-Time Implementation 

– scan mask vector and only execute 
elements with non-zero masks 

C[1] 

C[2] 

C[0] 

A[3] B[3] 

A[4] B[4] 

A[5] B[5] 

A[6] B[6] 

M[3]=0 

M[4]=1 

M[5]=1 

M[6]=0 

M[2]=0 

M[1]=1 

M[0]=0 

Write data port Write Enable 

A[7] B[7] M[7]=1 

Simple Implementation 

– execute all N operations, turn off  

     result writeback according to mask 
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Vector Reductions 

Problem: Loop-carried dependence on reduction variables 

sum = 0; 

for (i=0; i<N; i++) 

    sum += A[i];  # Loop-carried dependence on sum 

Solution: Re-associate operations if possible, use binary tree to perform reduction 

# Rearrange as: 

sum[0:VL-1] = 0                 # Vector of VL partial sums 

for(i=0; i<N; i+=VL)            # Stripmine VL-sized chunks 

    sum[0:VL-1] += A[i:i+VL-1]; # Vector sum 

# Now have VL partial sums in one vector register 

do { 

    VL = VL/2;                    # Halve vector length 

    sum[0:VL-1] += sum[VL:2*VL-1] # Halve no. of partials 

} while (VL>1) 
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Vector Scatter/Gather 

Want to vectorize loops with indirect accesses: 
for (i=0; i<N; i++) 

    A[i] = B[i] + C[D[i]] 

 

Indexed load instruction (Gather) 
LV vD, rD       # Load indices in D vector 

LVI vC, rC, vD  # Load indirect from rC base 

LV vB, rB       # Load B vector 

ADDV.D vA,vB,vC # Do add 

SV vA, rA       # Store result 
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Vector Supercomputers 

Epitomized by Cray-1, 1976: 
 

• Scalar Unit 
– Load/Store Architecture 

• Vector Extension 
– Vector Registers 
– Vector Instructions 

• Implementation 
– Hardwired Control 
– Highly Pipelined Functional 

Units 
– Interleaved Memory System 
– No Data Caches 
– No Virtual Memory 

Cray 1 at The Deutsches Museum 
Image Credit: Clemens Pfeiffer 
http://en.wikipedia.org/wiki/File:Cray-1-deutsches-museum.jpg 
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Cray-1 (1976) 

Single Port 
Memory 
 
16 banks of 64-
bit words 
+  
8-bit SECDED 
 
80MW/sec data 
load/store 
 
320MW/sec 
instruction 
buffer refill 

4 Instruction Buffers 

64-bitx16 NIP 

LIP 

CIP 

(A0) 

( (Ah) + j k m ) 

64 
T Regs 

(A0) 

( (Ah) + j k m ) 

64  
B Regs 

S0 
S1 
S2 
S3 
S4 
S5 
S6 
S7 

A0 
A1 
A2 
A3 
A4 
A5 
A6 
A7 

Si 

Tjk 

Ai 

Bjk 

FP Add 

FP Mul 

FP Recip 

Int Add 

Int Logic 

Int Shift 

Pop Cnt 

Sj 

Si 

Sk 

Addr Add 

Addr Mul 

Aj 

Ai 

Ak 

memory bank cycle 50 ns     processor cycle 12.5 ns (80MHz) 

V0 
V1 
V2 
V3 
V4 
V5 
V6 
V7 

Vk 

Vj 

Vi V. Mask 

V. Length 64 Element Vector 
Registers 
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Agenda 

• Vector Processors 

• Single Instruction Multiple Data (SIMD) 
Instruction Set Extensions 

• Graphics Processing Units (GPU) 
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SIMD / Multimedia Extensions 

• Very short vectors added to existing ISAs for microprocessors 

• Use existing 64-bit registers split into 2x32b or 4x16b or 8x8b 

– This concept first used on Lincoln Labs TX-2 computer in 1957, with 36b 
datapath split into 2x18b or 4x9b 

– Newer designs have 128-bit registers (PowerPC Altivec, Intel SSE2/3/4) 
or 256-bit registers (Intel AVX) 

• Single instruction operates on all elements within register 

16b 16b 16b 16b 

32b 32b 

64b 

8b 8b 8b 8b 8b 8b 8b 8b 

16b 16b 16b 16b 

16b 16b 16b 16b 

16b 16b 16b 16b 

+ + + + 4x16b adds 
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Multimedia Extensions versus Vectors 

• Limited instruction set: 
– no vector length control 

– no strided load/store or scatter/gather 

– unit-stride loads must be aligned to 64/128-bit boundary 

• Limited vector register length: 
– requires superscalar dispatch to keep multiply/add/load units busy 

– loop unrolling to hide latencies increases register pressure 

• Trend towards fuller vector support in 
microprocessors 
– Better support for misaligned memory accesses 

– Support of double-precision (64-bit floating-point) 

– New Intel AVX spec (announced April 2008), 256b vector registers 
(expandable up to 1024b)  
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Agenda 

• Vector Processors 

• Single Instruction Multiple Data (SIMD) 
Instruction Set Extensions 

• Graphics Processing Units (GPU) 
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Graphics Processing Units (GPUs) 

• Original GPUs were dedicated fixed-function devices for 
generating 3D graphics (mid-late 1990s) including high-
performance floating-point units 
– Provide workstation-like graphics for PCs 
– User could configure graphics pipeline, but not really program it 

• Over time, more programmability added (2001-2005) 
– E.g., New language Cg for writing small programs run on each 

vertex or each pixel, also Windows DirectX variants 
– Massively parallel (millions of vertices or pixels per frame) but 

very constrained programming model 

• Some users noticed they could do general-purpose 
computation by mapping input and output data to images, 
and computation to vertex and pixel shading computations 
– Incredibly difficult programming model as had to use graphics 

pipeline model for general computation 
49 



General Purpose GPUs (GPGPUs) 

• In 2006, Nvidia introduced GeForce 8800 GPU supporting a 
new programming language: CUDA  
– “Compute Unified Device Architecture” 
– Subsequently, broader industry pushing for OpenCL, a vendor-

neutral version of same ideas. 

• Idea: Take advantage of GPU computational performance 
and memory bandwidth to accelerate some kernels for 
general-purpose computing 

• Attached processor model:  Host CPU issues data-parallel 
kernels to GP-GPU for execution 

• This lecture has a simplified version of Nvidia CUDA-style 
model and only considers GPU execution for computational 
kernels, not graphics 
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Simplified CUDA Programming Model 

• Computation performed by a very large number of 
independent small scalar threads (CUDA threads or 
microthreads) grouped into thread blocks. 

// C version of DAXPY loop. 
void daxpy(int n, double a, double*x, double*y) 
{ for (int i=0; i<n; i++) 
  y[i] = a*x[i] + y[i]; } 
 
 

 

// CUDA version. 
__host__  // Piece run on host processor. 
int nblocks = (n+255)/256; // 256 CUDA threads/block 
daxpy<<<nblocks,256>>>(n,2.0,x,y); 
 

__device__  // Piece run on GPGPU. 
void daxpy(int n, double a, double*x, double*y) 
{ int i = blockIdx.x*blockDim.x + threadId.x; 
 if (i<n) y[i]=a*x[i]+y[i]; } 
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“Single Instruction, Multiple Thread” 
• GPUs use a SIMT model, where individual scalar 

instruction streams for each CUDA thread are grouped 
together for SIMD execution on hardware (Nvidia 
groups 32 CUDA threads into a warp) 

µT0 µT1 µT2 µT3 µT4 µT5 µT6 µT7 

ld x 
mul a 
ld y 
add 
st y 

Scalar 
instruction 
stream 

SIMD execution across warp 
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GPU 

Hardware Execution Model 

• GPU is built from multiple parallel cores, each core contains a 
multithreaded SIMD processor with multiple lanes but with 
no scalar processor 

• CPU sends whole “grid” over to GPU, which distributes thread 
blocks among cores (each thread block executes on one core) 
– Programmer unaware of number of cores 

Core 0 

Lane 0  

Lane 1 

Lane 15 

Core 1 

Lane 0  

Lane 1 

Lane 15 

Core 15 

Lane 0  

Lane 1 

Lane 15 

GPU Memory 

CPU 

CPU Memory 
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“Single Instruction, Multiple Thread” 
• GPUs use a SIMT model, where individual scalar 

instruction streams for each CUDA thread are grouped 
together for SIMD execution on hardware (Nvidia 
groups 32 CUDA threads into a warp) 

µT0 µT1 µT2 µT3 µT4 µT5 µT6 µT7 

ld x 
mul a 
ld y 
add 
st y 

Scalar 
instruction 
stream 

SIMD execution across warp 
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Implications of SIMT Model 

• All “vector” loads and stores are scatter-gather, 
as individual µthreads perform scalar loads and 
stores 
– GPU adds hardware to dynamically coalesce individual 

µthread loads and stores to mimic vector loads and 
stores 

• Every µthread has to perform stripmining 
calculations redundantly (“am I active?”) as there 
is no scalar processor equivalent 

• If divergent control flow, need predicates 
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GPGPUs are Multithreaded SIMD 

 

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf 

Image Credit: NVIDIA 56 



Nvidia Fermi GF100 GPU 

[Wittenbrink, Kilgariff, and Prabhu, Hot Chips 2010] Image Credit: NVIDIA 
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Fermi “Streaming 
Multiprocessor” Core 

[Wittenbrink, Kilgariff, and Prabhu, Hot Chips 2010] 

Image Credit: NVIDIA 
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