
Computer Architecture 
ELE 475 / COS 475  

Slide Deck 10: Address Translation 
and Protection 

David Wentzlaff 

Department of Electrical Engineering 

Princeton University 

1 



2 

Memory Management 

• From early absolute addressing schemes, to 
modern virtual memory systems with support for 
virtual machine monitors 
 

• Can separate into orthogonal functions: 
– Translation (mapping of virtual address to physical address) 
– Protection (permission to access word in memory) 
– Virtual Memory (transparent extension of memory space using slower disk 

storage) 

• But most modern systems provide support for all 
the above functions with a single page-based 
system 
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Absolute Addresses 

• Only one program ran at a time, with unrestricted 
access to entire machine (RAM + I/O devices) 

• Addresses in a program depended upon where the 
program was to be loaded in memory 

• But it was more convenient for programmers to 
write location-independent subroutines 

EDSAC, early 50’s 

How could location independence be achieved? 

Linker and/or loader modify addresses of subroutines 
and callers when building a program memory image 
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Bare Machine 

• In a bare machine, the only kind of address 
is a physical address 
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Dynamic Address Translation 
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Location-independent programs 
Programming and storage management ease  

  need for a base register 

Protection 
Independent programs should not affect 
each other inadvertently 

  need for a bound register  
Multiprogramming drives requirement for 
resident supervisor to manage context 
switches between multiple programs 
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Simple Base and Bound Translation 
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Base and bounds registers are visible/accessible only 
when processor is running in the supervisor mode 
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Separate Areas for Program and Data 
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What is an advantage of this separation? 
(Scheme used on all Cray vector supercomputers prior to X1, 2002) 
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Base and Bound Machine 
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[ Can fold addition of base register into (base+offset) calculation using a 
carry-save adder (sums three numbers with only a few gate delays 
more than adding two numbers) ] 
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Memory Fragmentation 

  As users come and go, the storage is “fragmented”.  

  Therefore, at some stage programs have to be moved 
  around to compact the storage.  
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• Processor-generated address can be interpreted as a pair 
<page number, offset>: 

 

Paged Memory Systems 

Page tables make it possible to store the 
pages of a program non-contiguously. 
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• A page table contains the physical address of the base of each 
page: 
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Private Address Space per User 

• Each user has a page table  
• Page table contains an entry for each user page 
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Where Should Page Tables Reside? 

• Space required by the page tables (PT) is 
proportional to the address space, number of 
users, (inverse to) size of each page, ... 
– Space requirement is large 

– Too expensive to keep in registers 

• Idea: Keep PTs in the main memory 
– needs one reference to retrieve the page base address 

and another to access the data word 
• doubles the number of memory references! 

– Storage space to store PT grows with size of memory 

12 
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Page Tables in Physical Memory 
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Linear Page Table 

VPN Offset 

Virtual address 
PT Base Register 

VPN 

Data word 

Data Pages 

Offset 

PPN 
PPN 

DPN 
PPN 

PPN 
PPN 

Page Table 

DPN 

PPN 

DPN 
DPN 

DPN 
PPN 

• Page Table Entry (PTE) 
contains: 
– A bit to indicate if a page 

exists 
– PPN (physical page number) 

for a memory-resident page 
– DPN (disk page number) for 

a page on the disk 
– Status bits for protection 

and usage 
• OS sets the Page Table Base 

Register whenever active 
user process changes 
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Size of Linear Page Table 

With 32-bit addresses, 4-KB pages & 4-byte PTEs: 
  220 PTEs, i.e, 4 MB page table per user per process 

 4 GB of swap needed to back up full virtual address 
   space 

 
Larger pages? 

• Internal fragmentation (Not all memory in page is used) 

• Larger page fault penalty (more time to read from disk) 

 
What about 64-bit virtual address space??? 

• Even 1MB pages would require 244  8-byte PTEs (35 TB!) 

                          What is the “saving grace” ?  
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Hierarchical Page Table 
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Two-Level Page Tables in Physical 
Memory 
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Address Translation & Protection 

• Every instruction and data access needs address  

  translation and protection checks 
 

A good Virtual Memory (VM) design needs to be fast 
(~ one cycle) and space efficient 
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Translation Lookaside Buffers (TLB) 
Problem: Address translation is very expensive! 

In a two-level page table, each reference 
becomes several memory accesses 

 

Solution: Cache translations in TLB 
  TLB hit   Single-Cycle Translation 

       TLB miss   Page-Table Walk to refill  

VPN          offset 

V R W D    tag        PPN 

physical address PPN      offset 

virtual address 

hit? 

(VPN = virtual page number) 

(PPN = physical page number) 
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TLB Designs 

• Typically 16-128 entries, usually fully associative 
– Each entry maps a large page, hence less spatial locality across 

pages  more likely that two entries conflict 
– Sometimes larger TLBs (256-512 entries) are 4-8 way set-

associative 
– Larger systems sometimes have multi-level (L1 and L2) TLBs 

• Random (Clock Algorithm) or FIFO replacement policy 
• No process information in TLB 

– Flush TLB on Process Context Switch 

• TLB Reach: Size of largest virtual address space that can be 
simultaneously mapped by TLB 

Example: 64 TLB entries, 4KB pages, one page per entry 

 
TLB Reach = _____________________________________? 
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TLB Designs 

• Typically 16-128 entries, usually fully associative 
– Each entry maps a large page, hence less spatial locality across 

pages  more likely that two entries conflict 
– Sometimes larger TLBs (256-512 entries) are 4-8 way set-

associative 
– Larger systems sometimes have multi-level (L1 and L2) TLBs 

• Random (Clock Algorithm) or FIFO replacement policy 
• No process information in TLB 

– Flush TLB on Process Context Switch 

• TLB Reach: Size of largest virtual address space that can be 
simultaneously mapped by TLB 

Example: 64 TLB entries, 4KB pages, one page per entry 

 
TLB Reach = _____________________________________? 64 entries * 4 KB = 256 KB (if contiguous) 



TLB Extensions 

• Address Space Identifier (ASID) 

– Allow TLB Entries from multiple processes to be in 
TLB at same time.  ID of address space (Process) is 
matched on. 

– Global Bit (G) can match on all ASIDs 

• Variable Page Size (PS) 

– Can increase reach on a per page basis 

V R W D    tag        PPN      PS G  ASID 
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Handling a TLB Miss 

Software (MIPS, Alpha) 
TLB miss causes an exception and the operating system 
walks the page tables and reloads TLB. A privileged 
“untranslated”  addressing mode used for walk 
 

Hardware (SPARC v8, x86, PowerPC) 
A memory management unit (MMU) walks the page 
tables and reloads the TLB 
 

If a missing (data or PT) page is encountered during the 
TLB reloading, MMU gives up and signals a Page-Fault 
exception for the original instruction  
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Hierarchical Page Table Walk: 
SPARC v8 
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Page-Based Virtual-Memory Machine 
(Hardware Page-Table Walk) 
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Address Translation: 
putting it all together 
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Modern Virtual Memory Systems 
 Illusion of a large, private, uniform store 

Protection & Privacy 
several users, each with their private 
address space and one or more 
shared address spaces 

  page table  name space 
 

Demand Paging 
Provides the ability to run programs 
larger than the primary memory 
 
Hides differences in machine 
configurations 

   
The price is address translation on  
each memory reference 
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Address Translation in CPU Pipeline 

• Software handlers need restartable exception on TLB fault 

• Handling a TLB miss needs a hardware or software 
mechanism to refill TLB 

• Need to cope with additional latency of TLB: 
–   slow down the clock? 

–   pipeline the TLB and cache access? 

–   virtual address caches 

–   parallel TLB/cache access 
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Virtual-Address Caches 

• one-step process in case of a hit (+) 
• cache needs to be flushed on a context switch unless address space 

identifiers (ASIDs) included in tags (-) 
• aliasing problems due to the sharing of pages (-) 
• maintaining cache coherence (-)   (see later in course) 
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Virtually Addressed Cache 
(Virtual Index/Virtual Tag) 
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Aliasing in Virtual-Address Caches 
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Tag Data 

Two virtual pages share 
one physical page 

Virtual cache can have two 
copies of same physical data. 
Writes to one copy not visible 
to reads of other! 

General Solution:  Prevent aliases coexisting in cache 
Software (i.e., OS) solution for direct-mapped cache 

VAs of shared pages must agree in cache index bits; this 
ensures all VAs accessing same PA will conflict in direct-
mapped cache (early SPARCs) 



Cache-TLB Interactions 

• Physically Indexed/Physically Tagged 

• Virtually Indexed/Virtually Tagged 

• Virtually Indexed/Physically Tagged 
– Concurrent cache access with TLB Translation 

• Both Indexed/Physically Tagged 
– Small enough cache or highly associative cache 

will have fewer indexes than page size 

– Concurrent cache access with TLB Translation 

• Physically Indexed/Virtually Tagged 
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