
Computer Architecture
ELE 475 / COS 475

Slide Deck 10: Address Translation
and Protection

David Wentzlaff

Department of Electrical Engineering

Princeton University

1

2

Memory Management

• From early absolute addressing schemes, to
modern virtual memory systems with support for
virtual machine monitors

• Can separate into orthogonal functions:
– Translation (mapping of virtual address to physical address)
– Protection (permission to access word in memory)
– Virtual Memory (transparent extension of memory space using slower disk

storage)

• But most modern systems provide support for all
the above functions with a single page-based
system

3

Absolute Addresses

• Only one program ran at a time, with unrestricted
access to entire machine (RAM + I/O devices)

• Addresses in a program depended upon where the
program was to be loaded in memory

• But it was more convenient for programmers to
write location-independent subroutines

EDSAC, early 50’s

How could location independence be achieved?

Linker and/or loader modify addresses of subroutines
and callers when building a program memory image

4

Bare Machine

• In a bare machine, the only kind of address
is a physical address

PC
Inst.
Cache D Decode E M

Data
Cache W +

Main Memory (DRAM)

Memory Controller

Physical
Address

Physical
Address

Physical
Address

Physical
Address

Physical Address

Dynamic Address Translation

5

Location-independent programs
Programming and storage management ease

  need for a base register

Protection
Independent programs should not affect
each other inadvertently

  need for a bound register
Multiprogramming drives requirement for
resident supervisor to manage context
switches between multiple programs

prog1

prog2

P
h
y
s
ic

a
l
M

e
m

o
ry

OS

6

Simple Base and Bound Translation

Load X

Program
Address
Space

Bound
Register 

Bounds
Violation?

P
h
y
s
ic

a
l
M

e
m

o
ry

current
segment

Base
Register

+

Physical
Address Effective

Address

Base and bounds registers are visible/accessible only
when processor is running in the supervisor mode

Base Physical Address

Segment Length

7

Separate Areas for Program and Data

Physical
Address

Physical
Address

Load X

Program
Address
Space

M
ai

n
 M

em
o

ry

data
segment

Data Bound
Register

Effective Address
Register

Data Base
Register



+

Bounds
Violation?

Program Bound
Register

Program Counter

Program Base
Register



+

Bounds
Violation?

program
segment

Logical
Address

Logical
Address

What is an advantage of this separation?
(Scheme used on all Cray vector supercomputers prior to X1, 2002)

8

Base and Bound Machine

PC
Inst.
Cache D Decode E M

Data
Cache W +

Main Memory (DRAM)

Memory Controller

Physical
Address

Physical
Address

Physical
Address

Physical Address

Data Bound
Register

Data Base
Register



+

[Can fold addition of base register into (base+offset) calculation using a
carry-save adder (sums three numbers with only a few gate delays
more than adding two numbers)]

Logical
Address

Bounds Violation?

Physical
Address

Prog. Bound
Register

Program Base
Register



+

Logical
Address

Bounds Violation?

9

Memory Fragmentation

 As users come and go, the storage is “fragmented”.

 Therefore, at some stage programs have to be moved
 around to compact the storage.

OS
Space

16K

24K

24K

32K

24K

user 1

user 2

user 3

OS
Space

16K

24K

16K

32K

24K

user 1

user 2

user 3

user 5

user 4

8K

Users 4 & 5
arrive

Users 2 & 5
leave OS

Space

16K

24K

16K

32K

24K

user 1

user 4
8K

user 3

free

10

• Processor-generated address can be interpreted as a pair
<page number, offset>:

Paged Memory Systems

Page tables make it possible to store the
pages of a program non-contiguously.

0

1

2

3

0

1

2
3

Address Space
of User-1

Page Table
of User-1

1

0

2

3

page number offset

• A page table contains the physical address of the base of each
page:

Physical
Memory

11

Private Address Space per User

• Each user has a page table
• Page table contains an entry for each user page

VA1 User 1

Page Table

VA1 User 2

Page Table

VA1 User 3

Page Table

P
h
y
s
ic

a
l
M

e
m

o
ry

free

OS
pages

Where Should Page Tables Reside?

• Space required by the page tables (PT) is
proportional to the address space, number of
users, (inverse to) size of each page, ...
– Space requirement is large

– Too expensive to keep in registers

• Idea: Keep PTs in the main memory
– needs one reference to retrieve the page base address

and another to access the data word
• doubles the number of memory references!

– Storage space to store PT grows with size of memory

12

13

Page Tables in Physical Memory

VA1

User 1 Virtual
Address Space

User 2 Virtual
Address Space

PT
User
1

PT
User
2

VA1

P
h
y
s
ic

a
l
M

e
m

o
ry

14

Linear Page Table

VPN Offset

Virtual address
PT Base Register

VPN

Data word

Data Pages

Offset

PPN
PPN

DPN
PPN

PPN
PPN

Page Table

DPN

PPN

DPN
DPN

DPN
PPN

• Page Table Entry (PTE)
contains:
– A bit to indicate if a page

exists
– PPN (physical page number)

for a memory-resident page
– DPN (disk page number) for

a page on the disk
– Status bits for protection

and usage
• OS sets the Page Table Base

Register whenever active
user process changes

15

Size of Linear Page Table

With 32-bit addresses, 4-KB pages & 4-byte PTEs:
 220 PTEs, i.e, 4 MB page table per user per process

 4 GB of swap needed to back up full virtual address
 space

Larger pages?

• Internal fragmentation (Not all memory in page is used)

• Larger page fault penalty (more time to read from disk)

What about 64-bit virtual address space???

• Even 1MB pages would require 244 8-byte PTEs (35 TB!)

 What is the “saving grace” ?

16

Hierarchical Page Table

Level 1
Page Table

Level 2

Page Tables

Data Pages

page in Memory
page on Disk

Root of the Current
Page Table

p1

offset

p2

Virtual Address

(Processor
Register)

PTE of a nonexistent page

p1 p2 offset
0 11 12 21 22 31

10-bit
L1 index

10-bit
L2 index

P
h
y
s
ic

a
l
M

e
m

o
ry

17

Two-Level Page Tables in Physical
Memory

VA1

User 1

User1/VA1

User2/VA1

Level 1 PT
User 1

Level 1 PT
User 2

VA1

User 2

Level 2 PT
User 2

Virtual
Address
Spaces

Physical
Memory

18

Address Translation & Protection

• Every instruction and data access needs address

 translation and protection checks

A good Virtual Memory (VM) design needs to be fast
(~ one cycle) and space efficient

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset

Protection
Check

Exception?

Kernel/User Mode

Read/Write

19

Translation Lookaside Buffers (TLB)
Problem: Address translation is very expensive!

In a two-level page table, each reference
becomes several memory accesses

Solution: Cache translations in TLB
 TLB hit  Single-Cycle Translation

 TLB miss  Page-Table Walk to refill

VPN offset

V R W D tag PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)

20

TLB Designs

• Typically 16-128 entries, usually fully associative
– Each entry maps a large page, hence less spatial locality across

pages  more likely that two entries conflict
– Sometimes larger TLBs (256-512 entries) are 4-8 way set-

associative
– Larger systems sometimes have multi-level (L1 and L2) TLBs

• Random (Clock Algorithm) or FIFO replacement policy
• No process information in TLB

– Flush TLB on Process Context Switch

• TLB Reach: Size of largest virtual address space that can be
simultaneously mapped by TLB

Example: 64 TLB entries, 4KB pages, one page per entry

TLB Reach = _____________________________________?

21

TLB Designs

• Typically 16-128 entries, usually fully associative
– Each entry maps a large page, hence less spatial locality across

pages  more likely that two entries conflict
– Sometimes larger TLBs (256-512 entries) are 4-8 way set-

associative
– Larger systems sometimes have multi-level (L1 and L2) TLBs

• Random (Clock Algorithm) or FIFO replacement policy
• No process information in TLB

– Flush TLB on Process Context Switch

• TLB Reach: Size of largest virtual address space that can be
simultaneously mapped by TLB

Example: 64 TLB entries, 4KB pages, one page per entry

TLB Reach = _____________________________________? 64 entries * 4 KB = 256 KB (if contiguous)

TLB Extensions

• Address Space Identifier (ASID)

– Allow TLB Entries from multiple processes to be in
TLB at same time. ID of address space (Process) is
matched on.

– Global Bit (G) can match on all ASIDs

• Variable Page Size (PS)

– Can increase reach on a per page basis

V R W D tag PPN PS G ASID

22

23

Handling a TLB Miss

Software (MIPS, Alpha)
TLB miss causes an exception and the operating system
walks the page tables and reloads TLB. A privileged
“untranslated” addressing mode used for walk

Hardware (SPARC v8, x86, PowerPC)
A memory management unit (MMU) walks the page
tables and reloads the TLB

If a missing (data or PT) page is encountered during the
TLB reloading, MMU gives up and signals a Page-Fault
exception for the original instruction

24

Hierarchical Page Table Walk:
SPARC v8

31 11
0

Virtual Address Index 1 Index 2 Index 3 Offset

31 23 17 11 0

Context
Table
Register

Context
Register

root ptr

PTP

PTP

PTE

Context Table

L1 Table

L2 Table

L3 Table

Physical Address PPN Offset

MMU does this table walk in hardware on a TLB miss

25

Page-Based Virtual-Memory Machine
(Hardware Page-Table Walk)

PC
Inst.
TLB

Inst.
Cache D Decode E M

Data
Cache W +

Page Fault?
Protection violation?

Page Fault?
Protection violation?

• Assumes page tables held in untranslated physical memory

Data
TLB

Main Memory (DRAM)

Memory Controller
Physical
Address

Physical
Address

Physical Address

Physical
Address

Page-Table Base
Register

Virtual
Address Physical

Address

Virtual
Address

Hardware Page
Table Walker

Miss? Miss?

26

Address Translation:
putting it all together

Virtual Address

TLB
Lookup

Page Table
Walk

Update TLB Page Fault
(OS loads page)

Protection
Check

Physical
Address
(to cache)

miss hit

 the page is

 memory  memory denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULT

Restart instruction

27

Modern Virtual Memory Systems
 Illusion of a large, private, uniform store

Protection & Privacy
several users, each with their private
address space and one or more
shared address spaces

 page table  name space

Demand Paging
Provides the ability to run programs
larger than the primary memory

Hides differences in machine
configurations

The price is address translation on
each memory reference

OS

useri

Primary
Memory

Swapping
Store

VA PA mapping

TLB

28

Address Translation in CPU Pipeline

• Software handlers need restartable exception on TLB fault

• Handling a TLB miss needs a hardware or software
mechanism to refill TLB

• Need to cope with additional latency of TLB:
– slow down the clock?

– pipeline the TLB and cache access?

– virtual address caches

– parallel TLB/cache access

PC
Inst
TLB

Inst.
Cache D Decode E M

Data
TLB

Data
Cache W +

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

29

Virtual-Address Caches

• one-step process in case of a hit (+)
• cache needs to be flushed on a context switch unless address space

identifiers (ASIDs) included in tags (-)
• aliasing problems due to the sharing of pages (-)
• maintaining cache coherence (-) (see later in course)

CPU
Physical
Cache

TLB
Primary
Memory

VA
PA

Alternative: place the cache before the TLB

CPU

VA

(StrongARM) Virtual
Cache

PA
TLB

Primary
Memory

Virtually Addressed Cache
(Virtual Index/Virtual Tag)

30

PC

Inst.
TLB

Inst.
Cache D Decode E M

Data
Cache

W +

Data
TLB

Main Memory (DRAM)

Memory Controller

Physical
Address Instruction

data
Physical Address

Physical
Address

Page-Table Base
Register

Virtual
Address

Virtual
Address

Hardware Page
Table Walker

Miss? Miss?

Translate on miss

31

Aliasing in Virtual-Address Caches

VA1

VA2

Page Table

Data Pages

PA

VA1

VA2

1st Copy of Data at PA

2nd Copy of Data at PA

Tag Data

Two virtual pages share
one physical page

Virtual cache can have two
copies of same physical data.
Writes to one copy not visible
to reads of other!

General Solution: Prevent aliases coexisting in cache
Software (i.e., OS) solution for direct-mapped cache

VAs of shared pages must agree in cache index bits; this
ensures all VAs accessing same PA will conflict in direct-
mapped cache (early SPARCs)

Cache-TLB Interactions

• Physically Indexed/Physically Tagged

• Virtually Indexed/Virtually Tagged

• Virtually Indexed/Physically Tagged
– Concurrent cache access with TLB Translation

• Both Indexed/Physically Tagged
– Small enough cache or highly associative cache

will have fewer indexes than page size

– Concurrent cache access with TLB Translation

• Physically Indexed/Virtually Tagged

32

Acknowledgements

• These slides contain material developed and copyright by:
– Arvind (MIT)
– Krste Asanovic (MIT/UCB)
– Joel Emer (Intel/MIT)
– James Hoe (CMU)
– John Kubiatowicz (UCB)
– David Patterson (UCB)
– Christopher Batten (Cornell)

• MIT material derived from course 6.823
• UCB material derived from course CS252 & CS152
• Cornell material derived from course ECE 4750

33

Copyright © 2013 David Wentzlaff

34

