
Computer Architecture 
ELE 475 / COS 475 

Slide Deck 9: Advanced Caches 

David Wentzlaff 

Department of Electrical Engineering 

Princeton University 

1 



Agenda 

• Review 
– Three C’s 
– Basic Cache Optimizations 

• Advanced Cache Optimizations 
– Pipelined Cache Write 
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– Multiporting and Banking 
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– Non-Blocking Cache 
– Critical Word First/Early Restart 
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Average Memory Access Time 

• Average Memory Access Time = Hit Time + ( Miss Rate  * Miss Penalty ) 

Processor Main  
Memory CACHE 

Hit 

Miss 
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Categorizing Misses: The Three C’s 

• Compulsory – first-reference to a block, occur even 
with infinite cache 

• Capacity – cache is too small to hold all data needed by 
program, occur even under perfect replacement policy 
(loop over 5 cache lines) 

• Conflict – misses that occur because of collisions due 
to less than full associativity (loop over 3 cache lines) 5 



Reduce Hit Time: Small & Simple 
Caches 

 

Plot from Hennessy and Patterson Ed. 4  
Image Copyright © 2007-2012 Elsevier Inc. All rights Reserved. 
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Reduce Miss Rate: Large Block Size 

• Less tag overhead 
• Exploit fast burst transfers 

from DRAM 
• Exploit fast burst transfers 

over wide on-chip busses 

• Can waste bandwidth if data is 
not used 

• Fewer blocks -> more conflicts 

Plot from Hennessy and Patterson Ed. 5 Image Copyright © 2011, Elsevier Inc. All rights Reserved. 
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Reduce Miss Rate: Large Cache Size 

Empirical Rule of Thumb:  

If cache size is doubled, miss rate usually drops by about √2 

Plot from Hennessy and Patterson Ed. 5 Image Copyright © 2011, Elsevier Inc. All rights Reserved. 
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Reduce Miss Rate: High Associativity 

Empirical Rule of Thumb:  
    Direct-mapped cache of size N has about the same miss rate  
    as a two-way set- associative cache of size N/2 

Plot from Hennessy and Patterson Ed. 5 Image Copyright © 2011, Elsevier Inc. All rights Reserved. 
9 



Agenda 

• Review 
– Three C’s 
– Basic Cache Optimizations 

• Advanced Cache Optimizations 
– Pipelined Cache Write 
– Write Buffer 
– Multilevel Caches 
– Victim Caches 
– Prefetching 

• Hardware 
• Software 

– Multiporting and Banking 
– Software Optimizations 
– Non-Blocking Cache 
– Critical Word First/Early Restart 

 
 10 



Write Performance 

  

  Tag Data   V 

 = 

Block 
Offset 

  Tag Index 

 t 
 k 

 b 

 t 

HIT Data Word or Byte 

  2k 

lines 

WE 

11 



Reducing Write Hit Time 

Problem: Writes take two cycles in memory stage, one 
cycle for tag check plus one cycle for data write if hit 

 
Solutions: 
• Design data RAM that can perform read and write 

concurrently, restore old value after tag miss 
 

• Fully-associative (CAM Tag) caches: Word line only 
enabled if hit 
 

• Pipelined writes: Hold write data for store in single buffer 
ahead of cache, write cache data during next store’s tag 
check 
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Pipelining Cache Writes 

Data from a store hit written into data portion of cache 
during tag access of subsequent store 

F D X M W 
Delayed 
Cache 
Write 
Buffer 
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Pipelining Cache Writes 

Tags Data 

Tag Index Store Data 

Address and Store Data From CPU 

  Delayed Write Data Delayed Write Addr. 

=? 

=? 

Load Data to CPU 

Load/Store 
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S 
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Hit? 

Data from a store hit written into data portion of cache 
during tag access of subsequent store 15 



Pipelined Cache Efficacy 

Cache 
Optimization 

Miss Rate Miss Penalty Hit Time Bandwidth 

Pipelined 
Writes 
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Pipelined Cache Efficacy 

Cache 
Optimization 

Miss Rate Miss Penalty Hit Time Bandwidth 

Pipelined 
Writes - + 

17 



Write Buffer to Reduce Read Miss 
Penalty 

Processor is not stalled on writes, and read misses 
can go ahead of write to main memory 

Problem: Write buffer may hold updated value of location needed by a read miss 

Simple scheme: on a read miss, wait for the write buffer to go empty 

Faster scheme: Check write buffer addresses against read miss addresses, if no 
match, allow read miss to go ahead of writes, else, return value in write buffer 

L1 Data 
Cache 

Unified 
L2 Cache 

RF 

CPU 

Write 
buffer 

Evicted dirty lines for writeback cache 
OR 

All writes in writethrough cache 
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Write Buffer Efficacy 

Cache 
Optimization 

Miss Rate Miss Penalty Hit Time Bandwidth 

Write Buffer 
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Write Buffer Efficacy 

Cache 
Optimization 

Miss Rate Miss Penalty Hit Time Bandwidth 

Write Buffer + 
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Multilevel Caches 

Problem: A memory cannot be large and fast 
Solution: Increasing sizes of cache at each level 

CPU L1$ L2$ DRAM 

Local miss rate = misses in cache / accesses to cache 
Global miss rate = misses in cache / CPU memory accesses 
Misses per instruction = misses in cache / number of instructions 
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Presence of L2 influences L1 design 

• Use smaller L1 if there is also L2 
– Trade increased L1 miss rate for reduced L1 hit time and 

reduced L1 miss penalty 

– Reduces average access energy 

• Use simpler write-through L1 with on-chip L2 
– Write-back L2 cache absorbs write traffic, doesn’t go off-chip 

– At most one L1 miss request per L1 access (no dirty victim write 
back) simplifies pipeline control 

– Simplifies coherence issues 

– Simplifies error recovery in L1 (can use just parity bits in L1 and 
reload from L2 when parity error detected on L1 read) 
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Inclusion Policy 
• Inclusive multilevel cache:  

– Inner cache holds copies of data in outer cache 

– External coherence snoop access need only check 
outer cache 

• Exclusive multilevel caches: 
– Inner cache may hold data not in outer cache 

– Swap lines between inner/outer caches on miss 

– Used in AMD Athlon with 64KB primary and 256KB 
secondary cache 

Why choose one type or the other? 
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Itanium-2 On-Chip Caches 
(Intel/HP, 2002) 

Level 1: 16KB, 4-way s.a., 
64B line,  quad-port (2 
load+2 store), single 
cycle latency 

 
Level 2: 256KB, 4-way s.a, 

128B line, quad-port (4 
load or 4 store), five 
cycle latency 

 
Level 3: 3MB, 12-way s.a., 

128B line, single 32B 
port, twelve cycle 
latency 

Image Credit: Intel 
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Power 7 On-Chip Caches [IBM 2009] 
32KB L1 I$/core 
32KB L1 D$/core 
3-cycle latency 

256KB Unified L2$/core 
8-cycle latency 

32MB Unified Shared L3$ 
Embedded DRAM 
25-cycle latency to local 
slice 

Image Credit: IBM 
Courtesy of International Business Machines Corporation,  
© International Business Machines Corporation. 
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Multilevel Cache Efficacy 

Cache 
Optimization 

Miss Rate Miss Penalty Hit Time Bandwidth 

Multilevel 
Cache 
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Multilevel Cache Efficacy L1 

Cache 
Optimization 

Miss Rate Miss Penalty Hit Time Bandwidth 

Multilevel 
Cache + 
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Multilevel Cache Efficacy L1, L2, L3 

Cache 
Optimization 

Miss Rate Miss Penalty Hit Time Bandwidth 

Multilevel 
Cache + + 
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Victim Cache 

• Small Fully Associative cache for recently evicted lines 
– Usually small (4-16 blocks) 

• Reduced conflict misses 
– More associativity for small number of lines 

• Can be checked in parallel or series with main cache 
• On Miss in L1, Hit in VC:  VC->L1, L1->VC 
• On Miss in L1, Miss in VC: L1->VC, VC->? (Can always be clean) 

L1 Data 
Cache 

Unified 
L2 Cache 

RF 

CPU 

Victim 
Cache (FA, 

small) 

Evicted Data from L1 

Hit Data (miss in L1) 
? 
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Victim Cache Efficacy 

Cache 
Optimization 

Miss Rate Miss Penalty Hit Time Bandwidth 

Victim Cache 
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Victim Cache Efficacy L1 

Cache 
Optimization 

Miss Rate Miss Penalty Hit Time Bandwidth 

Victim Cache + 
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Victim Cache Efficacy L1 and VC 

Cache 
Optimization 

Miss Rate Miss Penalty Hit Time Bandwidth 

Victim Cache + + 
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Prefetching 

• Speculate on future instruction and data accesses 
and fetch them into cache(s) 

– Instruction accesses easier to predict than data accesses 

• Varieties of prefetching 

– Hardware prefetching 

– Software prefetching 

– Mixed schemes 

• What types of misses does prefetching 
affect? 
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Issues in Prefetching 

• Usefulness – should produce hits 

• Timeliness – not late and not too early 

• Cache and bandwidth pollution 

L1 Data 

L1 
Instruction 

Unified L2 
Cache 

RF 

CPU 

Prefetched data 
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Hardware Instruction Prefetching 

Instruction prefetch in Alpha AXP 21064 

– Fetch two blocks on a miss; the requested block (i) and 
the next consecutive block (i+1) 

– Requested block placed in cache, and next block in 
instruction stream buffer 

– If miss in cache but hit in stream buffer, move stream 
buffer block into cache and prefetch next block (i+2) 

L1 
Instruction 

Unified L2 
Cache 

RF 

CPU 

Stream 
Buffer 

Prefetched 
instruction block 

Req 
 block 

Req 
 block 
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Hardware Data Prefetching 

• Prefetch-on-miss: 
–Prefetch b + 1 upon miss on b 

 
• One Block Lookahead (OBL) scheme  

– Initiate prefetch for block b + 1 when block b is accessed 
–Why is this different from doubling block size? 
–Can extend to N-block lookahead 

 
• Strided prefetch 

– If observe sequence of accesses to block b, b+N, b+2N, then prefetch 
b+3N etc. 

 
Example: IBM Power 5 [2003] supports eight independent streams of strided 

prefetch per processor, prefetching 12 lines ahead of current access 
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Software Prefetching 

 

  for(i=0; i < N; i++) { 
    prefetch( &a[i + 1] ); 
    prefetch( &b[i + 1] ); 
    SUM = SUM + a[i] * b[i]; 
 } 
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Software Prefetching Issues 

• Timing is the biggest issue, not predictability 
– If you prefetch very close to when the data is required, you might be 

too late 

– Prefetch too early, cause pollution 

– Estimate how long it will take for the data to come into L1, so we can 
set P appropriately 

–  Why is this hard to do? 

 
  for(i=0; i < N; i++) { 

    prefetch( &a[i + P] ); 
    prefetch( &b[i + P] ); 
    SUM = SUM + a[i] * b[i]; 
 } 

Must consider cost of prefetch instructions 
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Prefetching Efficacy 

Cache 
Optimization 

Miss Rate Miss Penalty Hit Time Bandwidth 

Prefetching 
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Prefetching Efficacy 

Cache 
Optimization 

Miss Rate Miss Penalty Hit Time Bandwidth 

Prefetching + + 
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Increasing Cache Bandwidth 
Multiporting and Banking 

PC 
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Increasing Cache Bandwidth 
Multiporting and Banking 
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Increasing Cache Bandwidth 
Multiporting and Banking 
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Challenge: Two stores to the same line, or Load and 
Store to same line 43 



True Multiport Caches 

• Large area increase (could be double for 2-port) 

• Hit time increase (can be made small) 

addr 

Data 
Cache 

rdata 

rdata 

addr 

Data 1 

Data 2 

Address 1 

Address 2 
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Banked Caches 

• Partition Address Space into multiple banks 
– Use portions of address (low or high order interleaved) 

Benefits: 
• Higher throughput 
Challenges: 
• Bank Conflicts 
• Extra Wiring 
• Uneven utilization 

Data 0 

Data 1 

Address 0 

Address 1 

Bank 0 

Bank 1 
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Cache Banking Efficacy 

Cache 
Optimization 

Miss Rate Miss Penalty Hit Time Bandwidth 

Cache 
Banking + 
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Compiler Optimizations 

• Restructuring code affects the data block access 
sequence  
– Group data accesses together to improve spatial locality 

– Re-order data accesses to improve temporal locality 

• Prevent data from entering the cache 
– Useful for variables that will only be accessed once before being 

replaced 

– Needs mechanism for software to tell hardware not to cache data 
(“no-allocate” instruction hints or page table bits) 

• Kill data that will never be used again 
– Streaming data exploits spatial locality but not temporal locality 

– Replace into dead cache locations 

47 



Loop Interchange 

  for(j=0; j < N; j++) { 
    for(i=0; i < M; i++) { 
       x[i][j] = 2 * x[i][j]; 
    } 
 } 
 
 

  for(i=0; i < M; i++) { 
    for(j=0; j < N; j++) { 
       x[i][j] = 2 * x[i][j]; 
    } 
 } 

 

What type of locality does this improve? 
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Loop Fusion 
for(i=0; i < N; i++) 

    a[i] = b[i] * c[i]; 
 

for(i=0; i < N; i++) 

     d[i] = a[i] * c[i]; 
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Loop Fusion 
for(i=0; i < N; i++) 

    a[i] = b[i] * c[i]; 
 

for(i=0; i < N; i++) 

     d[i] = a[i] * c[i]; 

  for(i=0; i < N; i++) 
{ 
       a[i] = b[i] * c[i];  
       d[i] = a[i] * c[i]; 

  } 
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Loop Fusion 
for(i=0; i < N; i++) 

    a[i] = b[i] * c[i]; 
 

for(i=0; i < N; i++) 

     d[i] = a[i] * c[i]; 

  for(i=0; i < N; i++) 
{ 
       a[i] = b[i] * c[i];  
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What type of locality does this improve? 
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 for(i=0; i < N; i++) 
    for(j=0; j < N; j++) { 
       r = 0; 
       for(k=0; k < N; k++)   
         r = r + y[i][k] * z[k][j]; 
       x[i][j] = r; 
    } 

Matrix Multiply, Naïve Code 

Not touched Old access New access 

x j 

i 

y k 

i 

z j 

k 
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 for(jj=0; jj < N; jj=jj+B) 
   for(kk=0; kk < N; kk=kk+B) 
      for(i=0; i < N; i++) 
          for(j=jj; j < min(jj+B,N); j++) { 
             r = 0; 
             for(k=kk; k < min(kk+B,N); k++)  
                r = r + y[i][k] * z[k][j]; 
             x[i][j] = x[i][j] + r; 
          } 

 

Matrix Multiply with Cache Tiling/Blocking 

y k 

i 

z j 

k 

x j 

i 
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Compiler Memory Optimizations 
Efficacy 

Cache 
Optimization 

Miss Rate Miss Penalty Hit Time Bandwidth 

Compiler 
Optimization 
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Compiler Memory Optimizations 
Efficacy 
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Compiler 
Optimization + 
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Non-Blocking Caches 
(aka Out-Of-Order Memory System) 

(aka Lockup Free Caches) 
• Enable subsequent cache accesses after a cache 

miss has occurred 
– Hit-under-miss 

– Miss-under-miss (concurrent misses) 

• Suitable for in-order processor or out-of-order 
processors 

• Challenges 
– Maintaining order when multiple misses that might 

return out of order 

– Load or Store to an already pending miss address 
(need merge) 60 



Non-Blocking Cache Timeline 

CPU Time CPU Time 

Miss Penalty 

Blocking Cache:  

CPU Time CPU Time 

Miss Penalty 

Hit Under Miss:  

Cache Miss 

Cache Miss Hit Stall on use 

CPU Time CPU Time 

Miss Penalty 

Miss Under Miss:  

Cache Miss Miss Stall on use 

Miss Penalty 

Time 
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Miss Status Handling Register (MSHR)/ 
Miss Address File (MAF) 

V Block 
Address 

Issued  

V MSHR 
Entry 

Type Offset Destination 

V: Valid 
Block Address: Address of cache block 
in memory system 
Issues: Issued to Main Memory/Next 
level of cache 

V: Valid 
MSHR Entry: Entry Number 
Type: {LW, SW, LH, SH, LB, SB} 
Offset: Offset within the block 
Destination: (Loads) Register, (Stores) 
Store buffer entry 

MSHR/MAF 

Load/Store Entry 
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Non-Blocking Cache Operation 

On Cache Miss: 
• Check MSHR for matched address 

– If found: Allocate new Load/Store entry pointing to MSHR 
– If not found: Allocate new MSHR entry and Load/Store entry 
– If all entries full in MSHR or Load/Store entry table, stall or 

prevent new LDs/STs 

On Data Return from Memory: 
• Find Load or Store waiting for it 

– Forward Load data to processor/Clear Store Buffer 
– Could be multiple Loads and Stores 

• Write Data to cache 
When Cache Lines is Completely Returned: 
• De-allocate MSHR entry 
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Non-Blocking Cache with In-Order 
Pipelines 

• Need Scoreboard for Individual Registers 
 

On Load Miss: 
• Mark Destination Register as Busy 
 
On Load Data Return: 
• Mark Destination Register as Available 

 
On Use of Busy Register: 
• Stall Processor 
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Non-Blocking Cache Efficacy 

Cache 
Optimization 

Miss Rate Miss Penalty Hit Time Bandwidth 

Non-blocking 
Cache 
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Non-Blocking Cache Efficacy 

Cache 
Optimization 

Miss Rate Miss Penalty Hit Time Bandwidth 

Non-blocking 
Cache + + 
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Critical Word First 

• Request the missed word from memory first. 

• Rest of cache line comes after “critical word” 

– Commonly words come back in rotated order 

CPU Time CPU Time 

Miss Penalty 

Basic Blocking Cache:  

Order of fill: 0, 1, 2, 3, 4, 5, 6, 7 

CPU Time CPU Time 

Miss Penalty 

Blocking Cache with  
Critical Word first:  

Order of fill: 3, 4, 5, 6, 7, 0, 1, 2 
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Early Restart 

• Data returns from memory in order 

• Processor Restarts when needed word is 
returned 

CPU Time CPU Time 

Miss Penalty 

Basic Blocking Cache:  

Order of fill: 0, 1, 2, 3, 4, 5, 6, 7 

CPU Time CPU Time 

Miss Penalty 

Blocking Cache with  
Early Restart:  

Order of fill: 0, 1, 2, 3, 4, 5, 6, 7 
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Critical Word First and Early Restart 
Efficacy 

Cache 
Optimization 

Miss Rate Miss Penalty Hit Time Bandwidth 

Critical Word 
First/Early 
Restart 
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Critical Word First and Early Restart 
Efficacy 
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+ 
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