
Computer Architecture
ELE 475 / COS 475

Slide Deck 9: Advanced Caches

David Wentzlaff

Department of Electrical Engineering

Princeton University

1

Agenda

• Review
– Three C’s
– Basic Cache Optimizations

• Advanced Cache Optimizations
– Pipelined Cache Write
– Write Buffer
– Multilevel Caches
– Victim Caches
– Prefetching

• Hardware
• Software

– Multiporting and Banking
– Software Optimizations
– Non-Blocking Cache
– Critical Word First/Early Restart

 2

Agenda

• Review
– Three C’s
– Basic Cache Optimizations

• Advanced Cache Optimizations
– Pipelined Cache Write
– Write Buffer
– Multilevel Caches
– Victim Caches
– Prefetching

• Hardware
• Software

– Multiporting and Banking
– Software Optimizations
– Non-Blocking Cache
– Critical Word First/Early Restart

3

Average Memory Access Time

• Average Memory Access Time = Hit Time + (Miss Rate * Miss Penalty)

Processor Main
Memory CACHE

Hit

Miss

4

Categorizing Misses: The Three C’s

• Compulsory – first-reference to a block, occur even
with infinite cache

• Capacity – cache is too small to hold all data needed by
program, occur even under perfect replacement policy
(loop over 5 cache lines)

• Conflict – misses that occur because of collisions due
to less than full associativity (loop over 3 cache lines) 5

Reduce Hit Time: Small & Simple
Caches

Plot from Hennessy and Patterson Ed. 4
Image Copyright © 2007-2012 Elsevier Inc. All rights Reserved.

6

Reduce Miss Rate: Large Block Size

• Less tag overhead
• Exploit fast burst transfers

from DRAM
• Exploit fast burst transfers

over wide on-chip busses

• Can waste bandwidth if data is
not used

• Fewer blocks -> more conflicts

Plot from Hennessy and Patterson Ed. 5 Image Copyright © 2011, Elsevier Inc. All rights Reserved.
7

Reduce Miss Rate: Large Cache Size

Empirical Rule of Thumb:

If cache size is doubled, miss rate usually drops by about √2

Plot from Hennessy and Patterson Ed. 5 Image Copyright © 2011, Elsevier Inc. All rights Reserved.
8

Reduce Miss Rate: High Associativity

Empirical Rule of Thumb:
 Direct-mapped cache of size N has about the same miss rate
 as a two-way set- associative cache of size N/2

Plot from Hennessy and Patterson Ed. 5 Image Copyright © 2011, Elsevier Inc. All rights Reserved.
9

Agenda

• Review
– Three C’s
– Basic Cache Optimizations

• Advanced Cache Optimizations
– Pipelined Cache Write
– Write Buffer
– Multilevel Caches
– Victim Caches
– Prefetching

• Hardware
• Software

– Multiporting and Banking
– Software Optimizations
– Non-Blocking Cache
– Critical Word First/Early Restart

 10

Write Performance

 Tag Data V

 =

Block
Offset

 Tag Index

 t
 k

 b

 t

HIT Data Word or Byte

 2k

lines

WE

11

Reducing Write Hit Time

Problem: Writes take two cycles in memory stage, one
cycle for tag check plus one cycle for data write if hit

Solutions:
• Design data RAM that can perform read and write

concurrently, restore old value after tag miss

• Fully-associative (CAM Tag) caches: Word line only
enabled if hit

• Pipelined writes: Hold write data for store in single buffer
ahead of cache, write cache data during next store’s tag
check

12

Reducing Write Hit Time

Problem: Writes take two cycles in memory stage, one
cycle for tag check plus one cycle for data write if hit

Solutions:
• Design data RAM that can perform read and write

concurrently, restore old value after tag miss

• Fully-associative (CAM Tag) caches: Word line only
enabled if hit

• Pipelined writes: Hold write data for store in single buffer
ahead of cache, write cache data during next store’s tag
check

13

Pipelining Cache Writes

Data from a store hit written into data portion of cache
during tag access of subsequent store

F D X M W
Delayed
Cache
Write
Buffer

14

Pipelining Cache Writes

Tags Data

Tag Index Store Data

Address and Store Data From CPU

 Delayed Write Data Delayed Write Addr.

=?

=?

Load Data to CPU

Load/Store

L

S

1 0

Hit?

Data from a store hit written into data portion of cache
during tag access of subsequent store 15

Pipelined Cache Efficacy

Cache
Optimization

Miss Rate Miss Penalty Hit Time Bandwidth

Pipelined
Writes

16

Pipelined Cache Efficacy

Cache
Optimization

Miss Rate Miss Penalty Hit Time Bandwidth

Pipelined
Writes - +

17

Write Buffer to Reduce Read Miss
Penalty

Processor is not stalled on writes, and read misses
can go ahead of write to main memory

Problem: Write buffer may hold updated value of location needed by a read miss

Simple scheme: on a read miss, wait for the write buffer to go empty

Faster scheme: Check write buffer addresses against read miss addresses, if no
match, allow read miss to go ahead of writes, else, return value in write buffer

L1 Data
Cache

Unified
L2 Cache

RF

CPU

Write
buffer

Evicted dirty lines for writeback cache
OR

All writes in writethrough cache

18

Write Buffer Efficacy

Cache
Optimization

Miss Rate Miss Penalty Hit Time Bandwidth

Write Buffer

19

Write Buffer Efficacy

Cache
Optimization

Miss Rate Miss Penalty Hit Time Bandwidth

Write Buffer +

20

Multilevel Caches

Problem: A memory cannot be large and fast
Solution: Increasing sizes of cache at each level

CPU L1$ L2$ DRAM

Local miss rate = misses in cache / accesses to cache
Global miss rate = misses in cache / CPU memory accesses
Misses per instruction = misses in cache / number of instructions

21

Presence of L2 influences L1 design

• Use smaller L1 if there is also L2
– Trade increased L1 miss rate for reduced L1 hit time and

reduced L1 miss penalty

– Reduces average access energy

• Use simpler write-through L1 with on-chip L2
– Write-back L2 cache absorbs write traffic, doesn’t go off-chip

– At most one L1 miss request per L1 access (no dirty victim write
back) simplifies pipeline control

– Simplifies coherence issues

– Simplifies error recovery in L1 (can use just parity bits in L1 and
reload from L2 when parity error detected on L1 read)

22

Inclusion Policy
• Inclusive multilevel cache:

– Inner cache holds copies of data in outer cache

– External coherence snoop access need only check
outer cache

• Exclusive multilevel caches:
– Inner cache may hold data not in outer cache

– Swap lines between inner/outer caches on miss

– Used in AMD Athlon with 64KB primary and 256KB
secondary cache

Why choose one type or the other?

23

Itanium-2 On-Chip Caches
(Intel/HP, 2002)

Level 1: 16KB, 4-way s.a.,
64B line, quad-port (2
load+2 store), single
cycle latency

Level 2: 256KB, 4-way s.a,

128B line, quad-port (4
load or 4 store), five
cycle latency

Level 3: 3MB, 12-way s.a.,

128B line, single 32B
port, twelve cycle
latency

Image Credit: Intel
24

Power 7 On-Chip Caches [IBM 2009]
32KB L1 I$/core
32KB L1 D$/core
3-cycle latency

256KB Unified L2$/core
8-cycle latency

32MB Unified Shared L3$
Embedded DRAM
25-cycle latency to local
slice

Image Credit: IBM
Courtesy of International Business Machines Corporation,
© International Business Machines Corporation.

25

Multilevel Cache Efficacy

Cache
Optimization

Miss Rate Miss Penalty Hit Time Bandwidth

Multilevel
Cache

26

Multilevel Cache Efficacy L1

Cache
Optimization

Miss Rate Miss Penalty Hit Time Bandwidth

Multilevel
Cache +

27

Multilevel Cache Efficacy L1, L2, L3

Cache
Optimization

Miss Rate Miss Penalty Hit Time Bandwidth

Multilevel
Cache + +

28

Victim Cache

• Small Fully Associative cache for recently evicted lines
– Usually small (4-16 blocks)

• Reduced conflict misses
– More associativity for small number of lines

• Can be checked in parallel or series with main cache
• On Miss in L1, Hit in VC: VC->L1, L1->VC
• On Miss in L1, Miss in VC: L1->VC, VC->? (Can always be clean)

L1 Data
Cache

Unified
L2 Cache

RF

CPU

Victim
Cache (FA,

small)

Evicted Data from L1

Hit Data (miss in L1)
?

29

Victim Cache Efficacy

Cache
Optimization

Miss Rate Miss Penalty Hit Time Bandwidth

Victim Cache

30

Victim Cache Efficacy L1

Cache
Optimization

Miss Rate Miss Penalty Hit Time Bandwidth

Victim Cache +

31

Victim Cache Efficacy L1 and VC

Cache
Optimization

Miss Rate Miss Penalty Hit Time Bandwidth

Victim Cache + +

32

Prefetching

• Speculate on future instruction and data accesses
and fetch them into cache(s)

– Instruction accesses easier to predict than data accesses

• Varieties of prefetching

– Hardware prefetching

– Software prefetching

– Mixed schemes

• What types of misses does prefetching
affect?

33

Issues in Prefetching

• Usefulness – should produce hits

• Timeliness – not late and not too early

• Cache and bandwidth pollution

L1 Data

L1
Instruction

Unified L2
Cache

RF

CPU

Prefetched data

34

Hardware Instruction Prefetching

Instruction prefetch in Alpha AXP 21064

– Fetch two blocks on a miss; the requested block (i) and
the next consecutive block (i+1)

– Requested block placed in cache, and next block in
instruction stream buffer

– If miss in cache but hit in stream buffer, move stream
buffer block into cache and prefetch next block (i+2)

L1
Instruction

Unified L2
Cache

RF

CPU

Stream
Buffer

Prefetched
instruction block

Req
 block

Req
 block

35

Hardware Data Prefetching

• Prefetch-on-miss:
–Prefetch b + 1 upon miss on b

• One Block Lookahead (OBL) scheme

– Initiate prefetch for block b + 1 when block b is accessed
–Why is this different from doubling block size?
–Can extend to N-block lookahead

• Strided prefetch

– If observe sequence of accesses to block b, b+N, b+2N, then prefetch
b+3N etc.

Example: IBM Power 5 [2003] supports eight independent streams of strided

prefetch per processor, prefetching 12 lines ahead of current access

36

Software Prefetching

 for(i=0; i < N; i++) {
 prefetch(&a[i + 1]);
 prefetch(&b[i + 1]);
 SUM = SUM + a[i] * b[i];
 }

37

Software Prefetching Issues

• Timing is the biggest issue, not predictability
– If you prefetch very close to when the data is required, you might be

too late

– Prefetch too early, cause pollution

– Estimate how long it will take for the data to come into L1, so we can
set P appropriately

– Why is this hard to do?

 for(i=0; i < N; i++) {

 prefetch(&a[i + P]);
 prefetch(&b[i + P]);
 SUM = SUM + a[i] * b[i];
 }

Must consider cost of prefetch instructions

38

Prefetching Efficacy

Cache
Optimization

Miss Rate Miss Penalty Hit Time Bandwidth

Prefetching

39

Prefetching Efficacy

Cache
Optimization

Miss Rate Miss Penalty Hit Time Bandwidth

Prefetching + +

40

Increasing Cache Bandwidth
Multiporting and Banking

PC
addr

rdata

Instr.
Cache

ALU

A
RF

Read

ALU

B
addr

rdata

Data
Cache

IR0

IR1 RF
Read

Branch Cond.

41

Increasing Cache Bandwidth
Multiporting and Banking

PC
addr

rdata

Instr.
Cache

ALU

A
RF

Read

ALU

B

addr

Data
Cache

IR0

IR1 RF
Read

Branch Cond.

rdata

rdata

addr

42

Increasing Cache Bandwidth
Multiporting and Banking

PC
addr

rdata

Instr.
Cache

ALU

A
RF

Read

ALU

B

addr

Data
Cache

IR0

IR1 RF
Read

Branch Cond.

rdata

rdata

addr

Challenge: Two stores to the same line, or Load and
Store to same line 43

True Multiport Caches

• Large area increase (could be double for 2-port)

• Hit time increase (can be made small)

addr

Data
Cache

rdata

rdata

addr

Data 1

Data 2

Address 1

Address 2

44

Banked Caches

• Partition Address Space into multiple banks
– Use portions of address (low or high order interleaved)

Benefits:
• Higher throughput
Challenges:
• Bank Conflicts
• Extra Wiring
• Uneven utilization

Data 0

Data 1

Address 0

Address 1

Bank 0

Bank 1

45

Cache Banking Efficacy

Cache
Optimization

Miss Rate Miss Penalty Hit Time Bandwidth

Cache
Banking +

46

Compiler Optimizations

• Restructuring code affects the data block access
sequence
– Group data accesses together to improve spatial locality

– Re-order data accesses to improve temporal locality

• Prevent data from entering the cache
– Useful for variables that will only be accessed once before being

replaced

– Needs mechanism for software to tell hardware not to cache data
(“no-allocate” instruction hints or page table bits)

• Kill data that will never be used again
– Streaming data exploits spatial locality but not temporal locality

– Replace into dead cache locations

47

Loop Interchange

 for(j=0; j < N; j++) {
 for(i=0; i < M; i++) {
 x[i][j] = 2 * x[i][j];
 }
 }

 for(i=0; i < M; i++) {
 for(j=0; j < N; j++) {
 x[i][j] = 2 * x[i][j];
 }
 }

What type of locality does this improve?

48

Loop Fusion
for(i=0; i < N; i++)

 a[i] = b[i] * c[i];

for(i=0; i < N; i++)

 d[i] = a[i] * c[i];

49

Loop Fusion
for(i=0; i < N; i++)

 a[i] = b[i] * c[i];

for(i=0; i < N; i++)

 d[i] = a[i] * c[i];

 for(i=0; i < N; i++)
{
 a[i] = b[i] * c[i];
 d[i] = a[i] * c[i];

 }

50

Loop Fusion
for(i=0; i < N; i++)

 a[i] = b[i] * c[i];

for(i=0; i < N; i++)

 d[i] = a[i] * c[i];

 for(i=0; i < N; i++)
{
 a[i] = b[i] * c[i];
 d[i] = a[i] * c[i];

 }

What type of locality does this improve?

51

 for(i=0; i < N; i++)
 for(j=0; j < N; j++) {
 r = 0;
 for(k=0; k < N; k++)
 r = r + y[i][k] * z[k][j];
 x[i][j] = r;
 }

Matrix Multiply, Naïve Code

Not touched Old access New access

x j

i

y k

i

z j

k

52

 for(jj=0; jj < N; jj=jj+B)
 for(kk=0; kk < N; kk=kk+B)
 for(i=0; i < N; i++)
 for(j=jj; j < min(jj+B,N); j++) {
 r = 0;
 for(k=kk; k < min(kk+B,N); k++)
 r = r + y[i][k] * z[k][j];
 x[i][j] = x[i][j] + r;
 }

Matrix Multiply with Cache Tiling/Blocking

y k

i

z j

k

x j

i

53

 for(jj=0; jj < N; jj=jj+B)
 for(kk=0; kk < N; kk=kk+B)
 for(i=0; i < N; i++)
 for(j=jj; j < min(jj+B,N); j++) {
 r = 0;
 for(k=kk; k < min(kk+B,N); k++)
 r = r + y[i][k] * z[k][j];
 x[i][j] = x[i][j] + r;
 }

Matrix Multiply with Cache Tiling/Blocking

What type of locality does this improve?

y k

i

z j

k

x j

i

54

 for(jj=0; jj < N; jj=jj+B)
 for(kk=0; kk < N; kk=kk+B)
 for(i=0; i < N; i++)
 for(j=jj; j < min(jj+B,N); j++) {
 r = 0;
 for(k=kk; k < min(kk+B,N); k++)
 r = r + y[i][k] * z[k][j];
 x[i][j] = x[i][j] + r;
 }

Matrix Multiply with Cache Tiling/Blocking

What type of locality does this improve?

y k

i

z j

k

x j

i

55

 for(jj=0; jj < N; jj=jj+B)
 for(kk=0; kk < N; kk=kk+B)
 for(i=0; i < N; i++)
 for(j=jj; j < min(jj+B,N); j++) {
 r = 0;
 for(k=kk; k < min(kk+B,N); k++)
 r = r + y[i][k] * z[k][j];
 x[i][j] = x[i][j] + r;
 }

Matrix Multiply with Cache Tiling/Blocking

What type of locality does this improve?

y k

i

z j

k

x j

i

56

 for(jj=0; jj < N; jj=jj+B)
 for(kk=0; kk < N; kk=kk+B)
 for(i=0; i < N; i++)
 for(j=jj; j < min(jj+B,N); j++) {
 r = 0;
 for(k=kk; k < min(kk+B,N); k++)
 r = r + y[i][k] * z[k][j];
 x[i][j] = x[i][j] + r;
 }

Matrix Multiply with Cache Tiling/Blocking

What type of locality does this improve?

y k

i

z j

k

x j

i

57

Compiler Memory Optimizations
Efficacy

Cache
Optimization

Miss Rate Miss Penalty Hit Time Bandwidth

Compiler
Optimization

58

Compiler Memory Optimizations
Efficacy

Cache
Optimization

Miss Rate Miss Penalty Hit Time Bandwidth

Compiler
Optimization +

59

Non-Blocking Caches
(aka Out-Of-Order Memory System)

(aka Lockup Free Caches)
• Enable subsequent cache accesses after a cache

miss has occurred
– Hit-under-miss

– Miss-under-miss (concurrent misses)

• Suitable for in-order processor or out-of-order
processors

• Challenges
– Maintaining order when multiple misses that might

return out of order

– Load or Store to an already pending miss address
(need merge) 60

Non-Blocking Cache Timeline

CPU Time CPU Time

Miss Penalty

Blocking Cache:

CPU Time CPU Time

Miss Penalty

Hit Under Miss:

Cache Miss

Cache Miss Hit Stall on use

CPU Time CPU Time

Miss Penalty

Miss Under Miss:

Cache Miss Miss Stall on use

Miss Penalty

Time
61

Miss Status Handling Register (MSHR)/
Miss Address File (MAF)

V Block
Address

Issued

V MSHR
Entry

Type Offset Destination

V: Valid
Block Address: Address of cache block
in memory system
Issues: Issued to Main Memory/Next
level of cache

V: Valid
MSHR Entry: Entry Number
Type: {LW, SW, LH, SH, LB, SB}
Offset: Offset within the block
Destination: (Loads) Register, (Stores)
Store buffer entry

MSHR/MAF

Load/Store Entry

62

Non-Blocking Cache Operation

On Cache Miss:
• Check MSHR for matched address

– If found: Allocate new Load/Store entry pointing to MSHR
– If not found: Allocate new MSHR entry and Load/Store entry
– If all entries full in MSHR or Load/Store entry table, stall or

prevent new LDs/STs

On Data Return from Memory:
• Find Load or Store waiting for it

– Forward Load data to processor/Clear Store Buffer
– Could be multiple Loads and Stores

• Write Data to cache
When Cache Lines is Completely Returned:
• De-allocate MSHR entry

63

Non-Blocking Cache with In-Order
Pipelines

• Need Scoreboard for Individual Registers

On Load Miss:
• Mark Destination Register as Busy

On Load Data Return:
• Mark Destination Register as Available

On Use of Busy Register:
• Stall Processor

64

Non-Blocking Cache Efficacy

Cache
Optimization

Miss Rate Miss Penalty Hit Time Bandwidth

Non-blocking
Cache

65

Non-Blocking Cache Efficacy

Cache
Optimization

Miss Rate Miss Penalty Hit Time Bandwidth

Non-blocking
Cache + +

66

Critical Word First

• Request the missed word from memory first.

• Rest of cache line comes after “critical word”

– Commonly words come back in rotated order

CPU Time CPU Time

Miss Penalty

Basic Blocking Cache:

Order of fill: 0, 1, 2, 3, 4, 5, 6, 7

CPU Time CPU Time

Miss Penalty

Blocking Cache with
Critical Word first:

Order of fill: 3, 4, 5, 6, 7, 0, 1, 2

67

Early Restart

• Data returns from memory in order

• Processor Restarts when needed word is
returned

CPU Time CPU Time

Miss Penalty

Basic Blocking Cache:

Order of fill: 0, 1, 2, 3, 4, 5, 6, 7

CPU Time CPU Time

Miss Penalty

Blocking Cache with
Early Restart:

Order of fill: 0, 1, 2, 3, 4, 5, 6, 7

68

Critical Word First and Early Restart
Efficacy

Cache
Optimization

Miss Rate Miss Penalty Hit Time Bandwidth

Critical Word
First/Early
Restart

69

Critical Word First and Early Restart
Efficacy

Cache
Optimization

Miss Rate Miss Penalty Hit Time Bandwidth

Critical Word
First/Early
Restart

+

70

Agenda

• Review
– Three C’s
– Basic Cache Optimizations

• Advanced Cache Optimizations
– Pipelined Cache Write
– Write Buffer
– Multilevel Caches
– Victim Caches
– Prefetching

• Hardware
• Software

– Multiporting and Banking
– Software Optimizations
– Non-Blocking Cache
– Critical Word First/Early Restart

 71

Acknowledgements

• These slides contain material developed and copyright by:
– Arvind (MIT)
– Krste Asanovic (MIT/UCB)
– Joel Emer (Intel/MIT)
– James Hoe (CMU)
– John Kubiatowicz (UCB)
– David Patterson (UCB)
– Christopher Batten (Cornell)

• MIT material derived from course 6.823
• UCB material derived from course CS252 & CS152
• Cornell material derived from course ECE 4750

72

Copyright © 2013 David Wentzlaff

73

