Computer Architecture ELE 475 / COS 475 Slide Deck 6: Superscalar 3

David Wentzlaff Department of Electrical Engineering Princeton University

Agenda

- Speculation and Branches
- Register Renaming
- Memory Disambiguation

Agenda

- Speculation and Branches
- Register Renaming
- Memory Disambiguation

Speculation and Branches: 14

No Speculative Instructions Commit State

Speculation and Branches: I2O2

No Speculative Instructions Commit State

Speculation and Branches: I2OI

- Y0 Y1 Y2 Y3 W C 0 MUL R1, R2, R3 F D Ι 1 ADDIU R4, R5, 1 F D I X0 W C r F D I I I Y0 Y1 Y2 Y3 W C 2 MUL R6, R1, R4 F 3 BEQZ R6, Target D D D Ι Ι Ι Ι X0 W 4 ADDIU R8, R9 ,1 F FF DDD D Т 5 ADDIU R10,R11,1 FFF F D 6 ADDIU R12,R13,1 F D Ι... F Т
- Must Squash Instructions in Pipeline after Branch to prevent PRF Write.
- Can remove from ROB immediately or wait until Commit

Speculation and Branches: IO3

- No Control speculation for IO3
- Could Stall on Branch

Speculation and Branches: IO2I

Speculation and Branches: IO2I

Copy ARF to PRF on Mispredict

Agenda

- Speculation and Branches
- Register Renaming
- Memory Disambiguation

- WAW and WAR are not "True" data dependencies
- RAW is "True" data dependency because reader needs result of writer
- "Name" dependencies exist because we have limited number of "Names" (register specifiers or memory addresses)

- WAW and WAR are not "True" data dependencies
- RAW is "True" data dependency because reader needs result of writer
- "Name" dependencies exist because we have limited number of "Names" (register specifiers or memory addresses)

 Breaking all "Name" Dependencies (Causes problems)

 0 MUL
 R1, R2, R3 F
 D
 I
 Y0 Y1 Y2 Y3 W
 C

 1 MUL
 R4, R1, R5
 F
 D
 I
 Y0 Y1 Y2 Y3 W
 C

 2 ADDIU R6, R4, 1
 F
 D
 I
 Y0 Y1 Y2 Y3 W
 C

 3 ADDIU R4, R7, 1
 F
 D
 I
 X0 W
 C

- WAW and WAR are not "True" data dependencies
- RAW is "True" data dependency because reader needs result of writer
- "Name" dependencies exist because we have limited number of "Names" (register specifiers or memory addresses)

 Breaking all "Name" Dependencies (Causes problems)

 0 MUL
 R1, R2, R3 F
 D
 I
 Y0 Y1 Y2 Y3 W
 C

 1 MUL
 R4, R1, R5
 F
 D
 I
 Y0 Y1 Y2 Y3 W
 C

 2 ADDIU R6, R4, 1
 F
 D
 I
 Y0 Y1 Y2 Y3 W
 C

 3 ADDIU R4, R7, 1
 F
 D
 I
 X0 W
 C

- WAW and WAR are not "True" data dependencies
- RAW is "True" data dependency because reader needs result of writer
- "Name" dependencies exist because we have limited number of "Names" (register specifiers or memory addresses)

```
Breaking all "Name" Dependencies (Causes problems)

0 MUL R1, R2, R3 F D I Y0 Y1 Y2 Y3 W C

1 MUL R4, R1, R5 F D i

2 ADDIU R6, R4, 1 F D i

3 ADDIU R4, R7, 1 F D i I X0 W C

WAW
```

14

Adding More Registers

0	MUL	ر ۲۸	ر∠∩	NJ F	υ	Ŧ	10	ΙT	ΤZ	1 D	W	C							
1	MUL	R4,	R1,	R5	F	D	i			Ι	Y0	Y1	Y2	Y3	W	С			
2	ADDIU	R6,	R4,	1		F	D	i						Ι	X0	W	С		
3	ADDIU	R8 ,	R7,	1			F	D	i		Ι	X0	W	r				С	

Register Renaming

- Adding more "Names" (registers/memory) removes dependence, but architecture namespace is limited.
 - Registers: Larger namespace requires more bits in instruction encoding. 32 registers = 5 bits, 128 registers = 7 bits.

• **Register Renaming:** Change naming of registers in hardware to eliminate WAW and WAR hazards

Register Renaming Overview

- 2 Schemes
 - Pointers in the Instruction Queue/ReOrder Buffer
 - Values in the Instruction Queue/ReOrder Buffer
- IO2I Uses pointers in IQ and ROB therefore start with that design.

IO2I: Register Renaming with Pointers in IQ and ROB

- All data structures same as in IO2I Except:
 - Add two fields to ROB
 - Add Rename Table (RT) and Free List (FL) of registers
- Increase size of PRF to provide more register "Names"

IO2I: Register Renaming with Pointers in IQ and ROB

Modified Reorder Buffer (ROB)

 P	
P	
F	
P	
P	
F	
P	
P	

State: {Free, Pending, Finished}

- S: Speculative
- ST: Store bit
- V: Destination is valid

Preg: Physical Register File Specifier

Areg: Architectural Register File Specifier **Ppreg**: Previous Physical Register

Rename Table (RT)

	Ρ	Preg
R1		
R2		
R3		
R31		

P: Pending, Write to Destination in flightPreg: Physical Register ArchitecturalRegister maps to.

Free List (FL)

Free: Register is free for renaming

If Free == 0, physical register is in use and cannot be used for renaming

Freeing Physical Registers

ADDU R1,R2,R3 <-Assume Arch. Reg R1 maps to Phys. Reg p0 ADDU R4,R1,R5 ADDU R1,R6,R7 <-Next write of Arch Reg R1, Mapped to Phys. Reg p1 ADDU R8,R9,R10

Ø ADDU R1,R2,R3 ΙX W 1 ADDU R4, R1, R5Х Τ W С 2 ADDU R1,R6,R7 Ι Х D 3 ADDU R8, R9, R10 Т Х W r Write p0 Alloc p2 Write p2 Dealloc p0

 If Arch. Reg Ri mapped to Phys. Reg pj, we can free pj when the next instruction that writes Ri commits

Unified Physical/Architectural Register File

- Combine PRF and ARF into one register file
- Replace ARF with Architectural Rename Table
- Instead of copying Values, Commit stage copies Preg pointer into appropriate entry of Architectural Rename Table
- Unified Physical/Architectural Register file can be smaller than separate

IO2I: Register Renaming with Values in IQ and ROB

- All data structures same as previous Except:
 - Modified ROB (Values instead of Register Specifier)
 - Modified RT
 - Modified IQ
 - No FL
 - No PRF, values merged into ROB

IO2I: Register Renaming with Values in IQ and ROB

Modified Reorder Buffer (ROB)

Image: set of the	State	te S ST	V	Value	Areg
F I I I P I I I I F I I I I					
P Image: Constraint of the second of the secon	Р				
P F	F				
F	Р				
	Р				
	F				
P	Р				
P	Р				

State: {Free, Pending, Finished}

- **S**: Speculative
- ST: Store bit
- V: Destination is valid
- Value: Actual Register Value

Areg: Architectural Register File Specifier

Modified Issue Queue (IQ)

Op: Opcode Imm.: Immediate **S**: Speculative Bit **V**: Valid (Instruction has corresponding Src/Dest) P: Pending (Waiting on operands to be produced)

If Pending, Source Field contains index into ROB. Like a Preg identifier

Modified Rename Table (RT)

V: Valid BitP: Pending, Write to Destination in flightPreg: Index into ROB

Agenda

- Speculation and Branches
- Register Renaming
- Memory Disambiguation

Memory Disambiguation

st R1, 0(R2) ld R3, 0(R4)

When can we execute the load?

In-Order Memory Queue

- Execute all loads and stores in program order
- => Load and store cannot leave IQ for execution until all previous loads and stores have completed execution
- Can still execute loads and stores speculatively, and out-of-order with respect to other (nonmemory) instructions
- Need a structure to handle memory ordering...

IO2I: With In-Order LD/ST IQ

Conservative OOO Load Execution st R1, 0(R2) ld R3, 0(R4)

- Split execution of store instruction into two phases: address calculation and data write
- Can execute load before store, if addresses known and r4 != r2
- Each load address compared with addresses of all previous uncommitted stores (can use partial conservative check i.e., bottom 12 bits of address)
- Don't execute load if any previous store address not known

(MIPS R10K, 16 entry address queue)

Address Speculation

st R1, 0(R2) ld R3, 0(R4)

- Guess that r4 != r2
- Execute load before store address known
- Need to hold all completed but uncommitted load/store addresses in program order
- If subsequently find r4==r2, squash load and *all* following instructions
 - => Large penalty for inaccurate address speculation

IO2I: With OOO Load and Stores

Memory Dependence Prediction

(Alpha 21264)

- Guess that r4 != r2 and execute load before store
- If later find r4==r2, squash load and all following instructions, but mark load instruction as store-wait
- Subsequent executions of the same load instruction will wait for all previous stores to complete
- Periodically clear *store-wait* bits

Acknowledgements

- These slides contain material developed and copyright by:
 - Arvind (MIT)
 - Krste Asanovic (MIT/UCB)
 - Joel Emer (Intel/MIT)
 - James Hoe (CMU)
 - John Kubiatowicz (UCB)
 - David Patterson (UCB)
 - Christopher Batten (Cornell)
- MIT material derived from course 6.823
- UCB material derived from course CS252 & CS152
- Cornell material derived from course ECE 4750

Copyright © 2013 David Wentzlaff

Speculative Loads / Stores

Just like register updates, stores should not modify the memory until after the instruction is committed

- A speculative store buffer is a structure introduced to hold speculative store data.

Speculative Store Buffer

- On store execute:
 - mark entry valid and speculative, and save data and tag of instruction.
- On store commit:

- clear speculative bit and eventually move data to cache

- On store abort:
 - clear valid bit

Speculative Store Buffer

- If data in both store buffer and cache, which should we use? Speculative store buffer
- If same address in store buffer twice, which should we use? Youngest store older than load