Computer Architecture
ELE 475 / COS 475
Slide Deck 6: Superscalar 3

David Wentzlaff
Department of Electrical Engineering

Princeton University

PRINCETON
?UNWERSITY PRINCE'lQN

School of Engineering and Applied Science

Agenda

e Speculation and Branches
* Register Renaming
e Memory Disambiguation

Agenda

e Speculation and Branches
* Register Renaming
* Memory Disambiguation

Speculation and Branches: 14

®MUL R1, R2, R3F D I YO Yl Y2VY3W

1 ADDIU R4, R5, 1 F D I X0 X1 X2 X3 W

2 MUL R6, R1, R4 F D I I I YOoVYLVY2Y3W

3 BEQZ R6, Target F D DD I I I I X0XLX2X3W

4 ADDIU R8, R9 ,1 F F FDDDUD I -- - - --

5 ADDIU R10,R11,1 F F F F D == == == == == --

6 ADDIU R12,R13,1 e
T F D I...

* No Speculative Instructions Commit State

Speculation and Branches: 1202

@ MUL Rl, R2, R3 F D I YO Y1 Y2Y3 W

1 ADDIU R4, R5, 1 F D I X0 W

2 MUL R6, R1, R4 F D I I I YO Y1 Y2Y3 W

3 BEQZ R6, Target F DD DI I I I XO0W

4 ADDIU R8, R9 ,1 F F F DD DDTI -- --

5 ADDIU R10,R11,1 F F F F D ------

6 ADDIU R12,R13,1 Fo-- -- -- --
T F D I

* No Speculative Instructions Commit State

SB X0 .
) .

YO: - 3 > :

Speculation and Branches: 120l

@ MUL Rl, R2, R3 F D I YO Yl1Y2Y3 W C

1 ADDIU R4, R5, 1 F D I X0 W r C

2 MUL R6, R1, R4 F D I I I YO0VY1l1Y2Y3 W C

3 BEQZ R6, Target F D D DI I I I XoW C

4 ADDIU R8, R9 ,1 F F F DDDDTI ------

5 ADDIU R10,R11,1 F F F FD --------

6 ADDIU R12,R13,1 Fo-- - -- -- --
T F D I. ..

Must Squash Instructions in Pipeline after Branch to
prevent PRF Write.

e Can remove from ROB immediately or wait until Commit

> _PRF
Eog >T> i

> s :

Speculation and Branches: 103

© MUL Rl1, R2, R3 F D I YO Yl Y2Y3 W

1 ADDIU R4, R5, 1 F D I X0 W

2 MUL R6é, R1, R4 F D 1 I YO Y1l Y2 Y3 W

3 BEQZ R6, Target F D i 1 (xo)w

4 ADDIU R8, R9 ,1 F D i I X0 W

5 ADDIU R10,R11,1 F i I XoW Speculative
6 ADDIU R12,R13,1 F D 1 I| X0 W Instructions
7 ?2? F D Wrote to ARF
8 ??? F D

9 ??? F D

19??? F D

11?°?°? F |D

T F D I

* No Control speculation for 103
* Could Stall on Branch

3-[!=

MUL
ADDIU
MUL
BEQZ
ADDIU
ADDIU
ADDIU
PP
PP

W 00 N O U1 & W N BERO

2?2
10???
11???

Speculatlon and Branches: 102]

R2, R3F D I Y0 Yl1VY2Y3 W C

R4,
R6,
R6,
RS,

R5, 1 F
R1, R4
Target

R9 ,1

R10,R11,1
R12,R13,1

D I X0 W

F D
F

m O

m O e

r C
I YO Y1VY2Y3 W C

m O

Need to clean up
Speculative state
In PRF. Needs
Selective Rollback

SPRE"EE ARF

8

MUL
ADDIU
MUL
BEQZ
ADDIU
ADDIU
ADDIU
PP
PP

W 00 N O U1 & W N BERO

???
10???
11»2?°?
1272?°?
13»2??
T

* Copy ARFtoP

Speculatlon and Branches: 102]

D I YO Yl1VY2Y3 W C

R4,
R6,
R6,
RS,

R2, R3 F
R5, 1
R1, R4
Target
RO ,1

R10,R11,1
R12,R13,1

>

Y=

F

D I XoW r C
F D 1 I YO Y1 Y2Y3 W C
F D 1 I X0 W
—
F D 1 I X0 W r
F i I X0 W r
F D 1 I Xo
F D /
F D /
F [| —
F D /
F D /
F/
/
F

RF on Mispredict

Speculative
= |nstructions
Wrote to PRF
Not ARF

SPRE"EE ARF

b
L L pmm>{l >

_FSB

> >

9

Agenda

e Speculation and Branches
* Register Renaming
* Memory Disambiguation

10

WAW and WAR “Name” Dependencies

* WAW and WAR are not “True” data dependencies

* RAW is “True” data dependency because reader
needs result of writer

 “Name” dependencies exist because we have
limited number of “Names” (register specifiers or
memory addresses)

WAW and WAR “Name” Dependencies

* WAW and WAR are not “True” data dependencies

* RAW is “True” data dependency because reader
needs result of writer

 “Name” dependencies exist because we have
limited number of “Names” (register specifiers or
memory addresses)

Breaking all “Name” Dependencies (Causes problems)
0 MUL Rl, R2, R3 F D I VYO Y1l Y2Y3 W C

1 MUL R4, R1, R5 F D 1 I YO Y1 VY2Y3 W C
2 ADDIU R6, R4, 1 F D i I X0 W C
3 ADDIU R4, R7, 1 F D 1 I X0 W r C

WAW and WAR “Name” Dependencies

* WAW and WAR are not “True” data dependencies

* RAW is “True” data dependency because reader
needs result of writer

 “Name” dependencies exist because we have
limited number of “Names” (register specifiers or
memory addresses)

Breaking all “Name” Dependencies (Causes problems)
0 MUL Rl, R2, R3 F D I VYO Y1l Y2Y3 W C
1 MUL R4, R1l, R5 F D 1 YO Y1 Y2 Y3 W C

2 ADDIU R6, R4, 1 F D 1 £ @X@ W C
3 ADDIU R4, R7, 1 F D 1 I X0 W C

WAW and WAR “Name” Dependencies

* WAW and WAR are not “True” data dependencies

* RAW is “True” data dependency because reader
needs result of writer

 “Name” dependencies exist because we have
limited number of “Names” (register specifiers or
memory addresses)

Breaking all “Name” Dependencies (Causes problems)

0 MUL Rl, R2, R3 F D I VYO Y1l Y2Y3 W C

1 MUL R4, R1l, R5 F D 1 @Y@ Y1 Y2Y3 W C
[4

2 ADDIU R6, R4, 1 F D 1 W C
3 ADDIU R4, R7, 1 F D 1 I X0 W C
WAW

N

Adding More Registers

Breaking all “Name” Dependencies
© MUL Rl, R2, R3F D I YO Y1 VY2Y3 W C

1 MUL R4, R1, R5 F D 1 I YO Y1 VY2Y3 W C
2 ADDIU R6, R4, 1 F D 1 I X0 W C
3 ADDIU R4, R7, 1 F D 1 I X0 W r C

1021 Microarchitecture Conservatively Stalls

0 MUL Rl, R2, R3 F D I VYO Yl Y2Y3 W C

1 MUL R4, R1l, R5 F D 1 I YO Y1 Y2 Y3 C

2 ADDIU R6, R4, 1 F D i X0 W _

3 ADDIU R4, R7, 1 F D D D D D D D D D D I XeW C

Manual Register Renaming. What if we could use more registers? Second R4 Write to R8?
© MUL R1, R2, R3F D I YO Y1 Y2Y3I W C

1 MUL R4, R1, R5 F D 1 I YO Y1 VY2Y3 W C
2 ADDIU R6, R4, 1 F D 1 I X0 W C
3 ADDIU R8, R7, 1 F D i I X0 W r C

Register Renaming

* Adding more “Names” (registers/memory)
removes dependence, but architecture
namespace is limited.

— Registers: Larger namespace requires more bits in

instruction encoding. 32 registers =5 bits, 128
registers = 7 bits.

* Register Renaming: Change naming of registers
in hardware to eliminate WAW and WAR hazards

Register Renaming Overview

e 2 Schemes
— Pointers in the Instruction Queue/ReOrder Buffer
— Values in the Instruction Queue/ReOrder Buffer

* |02l Uses pointers in IQ and ROB therefore
start with that design.

|021: Register Renaming with Pointers

FL

RT

Fog

in 1Q

and ROB

>

Ll

ROB

0 g

Vg2

FSB

e All data structures same as in 102l Except:

— Add two fields to ROB

— Add Rename Table (RT) and Free List (FL) of
registers

* Increase size of PRF to provide more register

“Names”

18

|1021: Register Renaming with Pointers

in IQ and ROB

FL
AR SB XO .
FodDl. Yl
SO
YO .
R/W
R
ROB R/W
Y
RT| R/W
FL | R/W

= = = = =

R/W
R/W

Modified Reorder Buffer (ROB)

State S 1) Vv Preg Areg Ppreg
o R R B I I
1 1 1 1 |
N I N R R
1P 1 1 1 |
0 I N R I
=1 1 1 1 |
N I N R R
1 1 1 1 |
I 1 1 1 1 |
I 1 1 1 1 |
State: {Free, Pending, Finished} Areg: Architectural Register File Specifier
S: Speculative Ppreg: Previous Physical Register
ST: Store bit

V: Destination is valid
Preg: Physical Register File Specifier

20

Rename Table (RT)

R1 I I Preg: Physical Register Architectural
R2 I I Register maps to.
EO
| |
ez |

P: Pending, Write to Destination in flight

21

Free List (FL)

Free: Register is free for renaming

p1 |
p2 | o
If Free == 0, physical register is in use and cannot be
p3 I used for renaming
N |

© 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
@MUL R1, R2, R3F D I YO YLY2Y3W C
1MUL R4, R1, RS F D i I YO YLY2Y3W C
2 ADDIU R6, R4, 1 F i I XeW C
3 ADDIU R4, R7, 1 F D i I XoW r C
RT FL 10 ROB
Cy DI WC RLR2R3 R4 R5 R6 R7 1 2 3 e 1 2 3
0 (peXpulp2dp3XpapsXp6)r{7. 8,9, 19}
1 0 p{7,8,9,10}
2 10 p7 p{8,9,10} p7 p7/R1/p@
3 2 p8 p{9,10} p8/p7{pa) p8/R4/p3
4 3 p9 plo p9/p8 p9/R6/p5
5 p10 p1e{p6) p10/R4/p8
6 1 l
7 0
. C)
9 3 po
10 2 po ¢ (P19/R4/p8
11 1 po
12 21 00 R4/3
13 2 p{@,3} R6/p5
14 3 p{0,3,5} ¢
15 p{0,3,5,8}

Freeing Physical Registers

ADDU R1,R2,R3 <-Assume Arch. Reg R1 maps to Phys. Reg p©

ADDU R4,R1,R5

ADDU R1,R6,R7 <-Next write of Arch Reg R1l, Mapped to Phys. Reg pl
ADDU R8,R9,R10

© ADDU R1,R2,R3 I X W C

1 ADDU R4,R1,R5 I X W C

2 ADDU R1,R6,R7 X W r C

3 ADDU R8,R9,R10 F D\\; X r C

Write p Free p9 Alloc p WPiﬁg\b@ Read Wreng

value in p@

© ADDU R1,R2,R3 I X W C

1 ADDU R4,R1,R5 I X W C

2 ADDU R1,R6,R7 I X W r C

3

ADDU R8,R9,R10 pQF/D I X W r / C
Write p® Alloc Write p2~ Dealloc p®

* |f Arch. Reg Ri mapped to Phys. Reg pj, we can free pj when the next instruction
that writes Ri commits

Unified Physical/Architectural
Register File

Combine PRF and ARF into one register file
Replace ARF with Architectural Rename Table

Instead of copying Values, Commit stage
copies Preg pointer into appropriate entry of
Architectural Rename Table

Unified Physical/Architectural Register file can
be smaller than separate

|1021: Register Renaming with Values in
IQ and ROB

RT

Fog

>

ROB

Ll

0 g

Vg2

FSB

* All data structures same as previous Except:

— Modified ROB (Values instead of Register Specifier)
— Modified RT
— Modified I1Q

— No FL

— No PRF, values merged into ROB

26

|1021: Register Renaming with Values in

RT SB
R

|Q and ROB
X0 :
ROB

SO .

R/W
R/W

= = = =

27

Modified Reorder Buffer (ROB)

State S ST Vv Value Areg
-0 1 11 I
A I B I
= 1 1 1 I
U N B I
JU N B I
2 I B I
JU N B I
A I B I
| | | 1 I
I 1 1 1 I
State: {Free, Pending, Finished} Areg: Architectural Register File Specifier
S: Speculative
ST: Store bit

V: Destination is valid
Value: Actual Register Value

28

Modified Issue Queue (1Q)
0p imm s v]Dest v|Psro v sl

I I Op: Opcode

Imm.: Immediate
S: Speculative Bit
V: Valid (Instruction has
corresponding Src/Dest)
P: Pending (Waiting on
operands to be produced)

\ l
|

If Pending, Source Field contains
index into ROB. Like a Preg identifier

29

Modified Rename Table (RT)

Preg

V.
If V==0:
Value in ARF is up to date
IfV==1:
Value is in-flight or in ROB
P:
If P==0:
Value is in ROB
if P==1:

V: Valid Bit
P: Pending, Write to Destination in flight
Preg: Index into ROB

Value is in flight 30

© 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

@MUL R1, R2, R3F D I YO YLY2Y3W C
1MUL R4, RL, RS F D i I YOYLY2Y3W C
2 ADDIU R6, R4, 1 F i I X0 W C
3 ADDIU R4, R7, 1 F D i I X0 W r C

RT 1Q ROB
Cy DI WCRLR2R3 R4 R5 R6 R7 © 1 2 3 0 1 2 3
0
1 0
2 10 po pe(R20R3) p8/R1
3 2 pl p1/po{R5) p1/R4
4 3 p2 p2/pl p2/R6
5 p3 p3 p3/R4
6 1 1
7)
8 3 o @m
9 3
10 2 @D é @m
11 1
12 2 R4

=
w

w N R
®
-
()

el
(V2 BN

Agenda

e Speculation and Branches
* Register Renaming
* Memory Disambiguation

32

Memory Disambiguation

st R1, O (R2)
1d R3, O(R4)

When can we execute the load?

In-Order Memory Queue

* Execute all loads and stores in program order

=> Load and store cannot leave |Q for execution
until all previous loads and stores have
completed execution

* Can still execute loads and stores speculatively,
and out-of-order with respect to other (non-
memory) instructions

* Need a structure to handle memory ordering...

1021: With In-Order LD/ST 1Q

35

Conservative OO0 Load Execution

st Rl1, 0 (R2)
1d R3, O(R4)

Split execution of store instruction into two phases: address
calculation and data write

Can execute load before store, if addresses known and r4 !=r2

Each load address compared with addresses of all previous

uncommitted stores (can use partial conservative check i.e.,
bottom 12 bits of address)

Don’t execute load if any previous store address not known

(MIPS R10K, 16 entry address queue)

Address Speculation

st R1, 0(R2)
1d R3, 0 (R4)

Guess thatrd 1=r2
Execute load before store address known

Need to hold all completed but uncommitted load/store
addresses in program order

If subsequently find r4==r2, squash load and all following
instructions

=> Large penalty for inaccurate address speculation

1021: With OO0 Load and Stores

38

Memory Dependence Prediction

(Alpha 21264)

st rl, (r2)
1d r3, (r4)

e Guess that r4 1= r2 and execute load before
store

* |f later find rd==r2, squash load and all
following instructions, but mark load
instruction as store-wait

e Subsequent executions of the same load
instruction will wait for all previous stores to
complete

* Periodically clear store-wait bits

Acknowledgements

These slides contain material developed and copyright by:
— Arvind (MIT)
— Krste Asanovic (MIT/UCB)
— Joel Emer (Intel/MIT)
— James Hoe (CMU)
— John Kubiatowicz (UCB)
— David Patterson (UCB)
— Christopher Batten (Cornell)

MIT material derived from course 6.823
UCB material derived from course CS252 & CS152
Cornell material derived from course ECE 4750

Copyright © 2013 David Wentzlaff

Speculative Loads / Stores

Just like register updates, stores should not modify
the memory until after the instruction is committed

- A speculative store buffer is a structure introduced to hold
speculative store data.

Speculative Store Buffer

Speculative Load Address
Store | él ll)vata
Buffer ache

Ta Data

$a Bata T 5

a ata

Ta Data ags ata

Ta Data

Ta Data

Storeg Commit Path ;
! Load Data

»

* On store execute:
— mark entry valid and speculative, and save data and tag of
instruction.
* On store commit:

— clear speculative bit and eventually move data to cache
e On store abort:

— clear valid bit

43

Speculative Store Buffer

Speculative Load Address
Store | él l/)vata
Buffer ache

Ta Data

$a Bata T 5

a ata

Ta Data ags ata

Ta Data

Ta Data

Storeg Commit Path ;
! Load Data

e |f data in both store buffer and cache, which should we use?
Speculative store buffer

* |f same address in store buffer twice, which should we use?
Youngest store older than load

44

