
Computer Architecture
ELE 475 / COS 475

Slide Deck 5: Superscalar 2 and
Exceptions

David Wentzlaff

Department of Electrical Engineering

Princeton University

1

Agenda

• Interrupts

• Out-of-Order Processors

2

Interrupts:
altering the normal flow of control

3

Ii-1 HI1

HI2

HIn

Ii

Ii+1

program
interrupt
handler

An external or internal event that needs to be processed by
another (system) program. The event is usually unexpected or
rare from program’s point of view.

Causes of Exceptions

• Asynchronous: an external event
– input/output device service request

– timer expiration

– power disruptions, hardware failure

• Synchronous: an internal exception (a.k.a.
exceptions/trap)
– undefined opcode, privileged instruction

– arithmetic overflow, FPU exception

– misaligned memory access

– virtual memory exceptions: page faults,
 TLB misses, protection violations

– software exceptions: system calls, e.g., jumps into kernel
4

Interrupt: an event that requests the attention of the processor

Asynchronous Interrupts:
invoking the interrupt handler

• An I/O device requests attention by asserting
one of the prioritized interrupt request lines

• When the processor decides to process the
interrupt
– It stops the current program at instruction Ii, completing all the

instructions up to Ii-1 (a precise interrupt)

– It saves the PC of instruction Ii in a special register (EPC)

– It disables interrupts and transfers control to a designated interrupt
handler running in the kernel mode

5

Interrupt Handler

• Saves EPC before re-enabling interrupts to allow nested
interrupts
– need an instruction to move EPC into GPRs

– need a way to mask further interrupts at least until EPC can be saved

• Needs to read a status register that indicates the cause
of the interrupt

• Uses a special indirect jump instruction RFE (return-
from-exception) to resume user code, this:
– enables interrupts

– restores the processor to the user mode

– restores hardware status and control state

6

Synchronous Interrupts

• A synchronous interrupt (exception) is caused by a
particular instruction

• In general, the instruction cannot be completed and
needs to be restarted after the exception has been
handled
– requires undoing the effect of one or more partially executed instructions

• In the case of a system call trap, the instruction is
considered to have been completed
– syscall is a special jump instruction involving a change to privileged kernel mode

– Handler resumes at instruction after system call

7

Exception Handling 5-Stage Pipeline

8

• How to handle multiple simultaneous exceptions in
different pipeline stages?

• How and where to handle external asynchronous
interrupts?

PC
Inst.
Mem D Decode E M

Data
Mem W +

Illegal
Opcode

Overflow
Data address
Exceptions

PC address
Exception

Asynchronous Interrupts

9

Exception Handling 5-Stage Pipeline

PC
Inst.
Mem D Decode E M

Data
Mem W +

Illegal
Opcode

Overflow Data address
Exceptions

PC address
Exception

Asynchronous
Interrupts

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

C
a
u
s
e

E
P
C

Kill D
Stage

Kill F
Stage

Kill E
Stage

Select
Handler
PC

Kill
Writeback

Commit
Point

10

Exception Handling 5-Stage Pipeline

• Hold exception flags in pipeline until commit point (M
stage)

• Exceptions in earlier pipe stages override later
exceptions for a given instruction

• Inject external interrupts at commit point (override
others)

• If exception at commit: update Cause and EPC
registers, kill all stages, inject handler PC into fetch
stage

Speculating on Exceptions

• Prediction mechanism
– Exceptions are rare, so simply predicting no exceptions is very

accurate!

• Check prediction mechanism
– Exceptions detected at end of instruction execution pipeline, special

hardware for various exception types

• Recovery mechanism
– Only write architectural state at commit point, so can throw away

partially executed instructions after exception
– Launch exception handler after flushing pipeline

• Bypassing allows use of uncommitted instruction

results by following instructions

11

12

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I4 I5
ID I1 I2 I3 nop I5
EX I1 I2 nop nop I5

MA I1 nop nop nop I5

WB nop nop nop nop I5

Exception Pipeline Diagram

 time
 t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 MA1 nop overflow!

(I2) 100: XOR IF2 ID2 EX2 nop nop

(I3) 104: SUB IF3 ID3 nop nop nop

(I4) 108: ADD IF4 nop nop nop nop

(I5) Exc. Handler code IF5 ID5 EX5 MA5 WB5

Resource
Usage

Agenda

• Interrupts

• Out-of-Order Processors

13

Out-Of-Order (OOO) Introduction

Name Frontend Issue Writeback Commit

I4 IO IO IO IO Fixed Length Pipelines
Scoreboard

I2O2 IO IO OOO OOO Scoreboard

I2OI IO IO OOO IO Scoreboard,
Reorder Buffer, and Store Buffer

I03 IO OOO OOO OOO Scoreboard and Issue Queue

IO2I IO OOO OOO IO Scoreboard, Issue Queue,
Reorder Buffer, and Store Buffer

14

OOO Motivating Code Sequence

0 MUL R1, R2, R3
1 ADDIU R11,R10,1
2 MUL R5, R1, R4
3 MUL R7, R5, R6
4 ADDIU R12,R11,1
5 ADDIU R13,R12,1
6 ADDIU R14,R12,2

• Two independent sequences of instructions enable flexibility

in terms of how instructions are scheduled in total order
• We can schedule statically in software or dynamically in

hardware

15

1 0

2

3
6 5

4

I4: In-Order Front-End, Issue,
Writeback, Commit

16

F D X M W

I4: In-Order Front-End, Issue,
Writeback, Commit

17

F D
X0

M0 M1

W

X1

I4: In-Order Front-End, Issue,
Writeback, Commit (4-stage MUL)

To avoid increasing CPI, needs full bypassing which can be
expensive. To help cycle time, add Issue stage where
register file read and instruction “issued” to Functional Unit 18

F D

X0

M0 M1 W

X1

Y0 Y1 Y2 Y3

X2

X2 X3

X3

I4: In-Order Front-End, Issue,
Writeback, Commit (4-stage MUL)

 R W

 R/W W

19

F I

X0

M0 M1 W

X1

Y0 Y1 Y2 Y3

X2

X2 X3

X3

D

SB ARF

SB

ARF

Basic Scoreboard

P F 4 3 2 1 0

R1

R2

R3

…

R31

20

P: Pending, Write to
Destination in flight
F: Which functional unit
is writing register
Data Avail.: Where is the
write data in the
functional unit pipeline

• A One in Data Avail. In column ‘I’ means that result data is
in stage ‘I’ of functional unit F

• Can use F and Data Avail. fields to determine when to
bypass and where to bypass from

• A one in column zero means that cycle functional unit is in
the Writeback stage

• Bits in Data Avail. field shift right every cycle.

Data Avail.

Basic Scoreboard

P F 4 3 2 1 0

R1

R2

R3

…

R31

P: Pending, Write to
Destination in flight
F: Which functional unit
is writing register
Data Avail.: Where is the
write data in the
functional unit pipeline

• A One in Data Avail. In column ‘I’ means that result data is
in stage ‘I’ of functional unit F

• Can use F and Data Avail. fields to determine when to
bypass and where to bypass from

• A one in column zero means that cycle functional unit is in
the Writeback stage

• Bits in Data Avail. field shift right every cycle.

1

Data Avail.

21

0 MUL R1, R2, R3 F D I Y0 Y1 Y2 Y3 W

1 ADDIU R11,R10,1 F D I X0 X1 X2 X3 W

2 MUL R5, R1, R4 F D I I I Y0 Y1 Y2 Y3 W

3 MUL R7, R5, R6 F D D D I I I I Y0 Y1 Y2 Y3 W

4 ADDIU R12,R11,1 F F F D D D D I X0 X1 X2 X3 W

5 ADDIU R13,R12,1 F F F F D I X0 X1 X2 X3 W

6 ADDIU R14,R12,2 F D I X0 X1 X2 X3 W

Cyc D I 4 3 2 1 0 Dest Regs

1 0 RED Indicates if we look at F

2 1 0 Field, we can bypass on this cycle

3 2 1 1 R1

4 1 1 R11

5 1 1

6 3 2 1 1

7 1 1 1 R5

8 1 1

9 1

10 4 3 1

11 5 4 1 1 R7

12 6 5 1 1 R12

13 6 1 1 1 R13

14 1 1 1 1 R14

15 1 1 1 1

16 1 1 1

17 1 1

18 1
22

I2O2: In-order Frontend/Issue, Out-of-
order Writeback/Commit

23

 R W

 R R/W W

F I

X0

M0 M1 W

Y0 Y1 Y2 Y3

D

SB ARF

SB

ARF

I2O2 Scoreboard

• Similar to I4, but we can now use it to track
structural hazards on Writeback port

• Set bit in Data Avail. according to length of
pipeline

• Architecture conservatively stalls to avoid
WAW hazards by stalling in Decode therefore
current scoreboard sufficient. More
complicated scoreboard needed for
processing WAW Hazards

24

0 MUL R1, R2, R3 F D I Y0 Y1 Y2 Y3 W

1 ADDIU R11,R10,1 F D I X0 W

2 MUL R5, R1, R4 F D I I I Y0 Y1 Y2 Y3 W

3 MUL R7, R5, R6 F D D D I I I I Y0 Y1 Y2 Y3 W

4 ADDIU R12,R11,1 F F F D D D D I X0 W

5 ADDIU R13,R12,1 F F F F D I X0 W

6 ADDIU R14,R12,2 F D I I X0 W

Cyc D I 4 3 2 1 0 Dest Regs

1 0 RED Indicates if we look at F

2 1 0 Field, we can bypass on this cycle

3 2 1 1 R1

4 1 1 R11

5 1 1

6 3 2 1

7 1 1 R5

8 1

9 1

10 4 3 1

11 5 4 1 1 R7

12 6 5 1 1 R12

13 1 1 1 R13

14 6 1 1

15 1 1 R15

16 1

17

18
25

Writes with two cycle
latency. Structural
Hazard

Early Commit Point?

0 MUL R1, R2, R3 F D I Y0 Y1 Y2 Y3 /

1 ADDIU R11,R10,1 F D I X0 W /

2 MUL R5, R1, R4 F D I I I /

3 MUL R7, R5, R6 F D D D /

4 ADDIU R12,R11,1 F F F /

5 ADDIU R13,R12,1 /

6 ADDIU R14,R12,2

• Limits certain types of exceptions.

26

I2OI: In-order Frontend/Issue, Out-of-
order Writeback, In-order Commit

27

 W

 R/W W

 R W

 R/W W R/W

 W R/W

F I
X0
L0 L1 W

Y0 Y1 Y2 Y3

D
SB ARF

SB

ARF

S0

C

PRF
ROB

FSB

PRF

ROB

FSB

PRF=Physical Register File(Future File), ROB=Reorder Buffer, FSB=Finished Store Buffer (1 entry)

Reorder Buffer (ROB)

28

State S ST V Preg

--

P 1

F 1

P 1

P

F

P

P

--

--

State: {Free, Pending, Finished}
S: Speculative
ST: Store bit
V: Physical Register File Specifier Valid
Preg: Physical Register File Specifier

Reorder Buffer (ROB)

29

State S ST V Preg

--

P 1

F 1

P 1

P

F

P

P

--

--

State: {Free, Pending, Finished}
S: Speculative
ST: Store bit
V: Physical Register File Specifier Valid
Preg: Physical Register File Specifier

Commit stage is waiting for
Head of ROB to be finished

Next instruction allocates here in D

Head of ROB

Tail of ROB

Speculative because branch is in flight

Instruction wrote ROB out of order

Finished Store Buffer (FSB)

• Only need one entry if we only support one
memory instruction inflight at a time.

• Single Entry FSB makes allocation trivial.

• If support more than one memory instruction,
we need to worry about Load/Store address
aliasing.

30

V Op Addr Data

--

0 MUL R1, R2, R3 F D I Y0 Y1 Y2 Y3 W C
1 ADDIU R11,R10,1 F D I X0 W r C
2 MUL R5, R1, R4 F D I I I Y0 Y1 Y2 Y3 W C
3 MUL R7, R5, R6 F D D D I I I I Y0 Y1 Y2 Y3 W C
4 ADDIU R12,R11,1 F F F D D D D I X0 W r C
5 ADDIU R13,R12,1 F F F F D I X0 W r C
6 ADDIU R14,R12,2 F D I I X0 W r C

Cyc D I ROB 0 1 2 3
0
1 0
2 1 0 R1
3 2 1 R11
4 R5
5
6 3 2 R11
7 R7
8 R1
9
10 4 3
11 5 4 R12
12 6 5 R13 R5
13 R14
14 6 R12
15 R13
16 R7
17 R14
18
19 31

Empty = free entry in ROB

State of ROB at beginning of cycle

Pending entry in ROB

Circle=Finished (Cycle after W)

Last cycle before entry is freed from ROB
(Cycle in C stage)

Entry becomes free and is freed
on next cycle

What if First Instruction Causes an
Exception?

0 MUL R1, R2, R3 F D I Y0 Y1 Y2 Y3 W /

1 ADDIU R11,R10,1 F D I X0 W r -- /

2 MUL R5, R1, R4 F D I I I Y0 /

3 MUL R7, R5, R6 F D D D I /

4 ADDIU R12,R11,1 F F F D /

 F D I. . .

32

What About Branches?
Option 2

0 BEQZ R1, target F D I X0 W C

1 ADDIU R11,R10,1 F D I X0 /

2 ADDIU R5, R1, R4 F D I /

3 ADDIU R7, R5, R6 F D /

T ADDIU R12,R11,1 F D I . . .

Option 1

0 BEQZ R1, target F D I X0 W C

1 ADDIU R11,R10,1 F D I -

2 ADDIU R5, R1, R4 F D -

3 ADDIU R7, R5, R6 F -

T ADDIU R12,R11,1 F D I . . .

Option 3

0 BEQZ R1, target F D I X0 W C

1 ADDIU R11,R10,1 F D I X0 W /

2 ADDIU R5, R1, R4 F D I X0 W /

3 ADDIU R7, R5, R6 F D I X0 W /

T ADDIU R12,R11,1 F D I X0 W C

 33

Squash instructions in ROB
when Branch commits

Squash instructions earlier. Has more
complexity. ROB needs many ports.

Wait for speculative instructions to
reach the Commit stage and squash in
Commit stage

What About Branches?

• Three possible designs with decreasing
complexity based on when to squash speculative
instructions and de-allocate ROB entry:

1. As soon as branch resolves
2. When branch commits
3. When speculative instructions reach commit

• Base design only allows one branch at a time.

Second branch stalls in decode. Can add more
bits to track multiple in-flight branches.

34

Avoiding Stalling Commit on Store
Miss

0 OpA F D I X0 W C

1 SW F D I S0 W C C C C

2 OpB F D I X0 W W W W C

3 OpC F D I X X X X W C

4 OpD F D I I I I X W C

With Retire Stage

0 OpA F D I X0 W C

1 SW F D I S0 W C R R R

2 OpB F D I X0 W C

3 OpC F D I X W C

4 OpD F D I X W C

35

W

ARF

C

PRF
ROB

FSB
CSB R

CSB=Committed Store Buffer

IO3: In-order Frontend, Out-of-order
Issue/Writeback/Commit

36

 R W

 R R/W W

 W R/W W

F I

X0

M0 M1 W

Y0 Y1 Y2 Y3

D

SB ARF

SB

ARF

I
Q

I
Q

Issue Queue (IQ)

Instruction Ready = (!Vsrc0 || !Psrc0) && (!Vsrc1
|| !Psrc1) && no structural hazards

• For high performance, factor in bypassing

37

Op Imm S V Dest V P Src0 V P Src1

Op: Opcode
Imm.: Immediate
S: Speculative Bit
V: Valid (Instruction has
corresponding Src/Dest)
P: Pending (Waiting on
operands to be produced)

Centralized vs. Distributed Issue Queue

Centralized Distributed

38

F I

X0

M0

Y0

D I
Q F

I X0

M0

Y0

D

I
Q
B

I
Q
A

I

Advanced Scoreboard

P 4 3 2 1 0

R1

R2

R3

…

R31

39

P: Pending, Write to
Destination in flight
Data Avail.: Where is the
write data in the pipeline
and which functional unit

• Data Avail. now contains functional unit identfier
• A non-empty value in column zero means that cycle

functional unit is in the Writeback stage
• Bits in Data Avail. field shift right every cycle.

Data Avail.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 MUL R1, R2, R3 F D I Y0 Y1 Y2 Y3 W

1 ADDIU R11,R10,1 F D I X0 W

2 MUL R5, R1, R4 F D i I Y0 Y1 Y2 Y3 W

3 MUL R7, R5, R6 F D i I Y0 Y1 Y2 Y3 W

4 ADDIU R12,R11,1 F D i I X0 W

5 ADDIU R13,R12,1 F D i I X0 W

6 ADDIU R14,R12,2 F D i I X0 W

Cyc D I IQ 0 1 2

0

1 0

2 1 0 R1/R2/R3

3 2 1 R11/R10

4 3 R5/R1/R4

5 4 R7/R5/R6

6 5 2 R12/R11

7 6 4 R13/R12

8 5 R14/R12

9

10 3

11 6 R14/R12

12

13

14

Value bypassed so no circle, present
bit

Dest/Src0/Src1, Circle denotes value
present in ARF

Value set present by
Instruction 1 in cycle 5, W
Stage

40

Assume All Instruction in Issue Queue

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 MUL R1, R2, R3 F D i I Y0 Y1 Y2 Y3 W

1 ADDIU R11,R10,1 F D i I X0 W

2 MUL R5, R1, R4 F D i I Y0 Y1 Y2 Y3 W

3 MUL R7, R5, R6 F D i I Y0 Y1 Y2 Y3 W

4 ADDIU R12,R11,1 F D i I X0 W

5 ADDIU R13,R12,1 F D i I X0 W

6 ADDIU R14,R12,2 F D i I X0 W

• Better performance than previous?

41

IO2I: In-order Frontend, Out-of-order
Issue/Writeback, In-order Commit

42

 W

 R/W W

 R W

 R/W W R/W

 W R/W

 W R/W

F I
X0
L0 L1 W

Y0 Y1 Y2 Y3

D
SB ARF

SB

ARF

S0

C

PRF
ROB

FSB

PRF

ROB

FSB

I
Q

IQ

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 MUL R1, R2, R3 F D I Y0 Y1 Y2 Y3 W C

1 ADDIU R11,R10,1 F D I X0 W r C

2 MUL R5, R1, R4 F D i I Y0 Y1 Y2 Y3 W C

3 MUL R7, R5, R6 F D i I Y0 Y1 Y2 Y3 W C

4 ADDIU R12,R11,1 F D i I X0 W r C

5 ADDIU R13,R12,1 F D i I X0 W r C

6 ADDIU R14,R12,2 F D i I X0 W r C

0 MUL R1, R2, R3 F D I Y0 Y1 Y2 Y3 W C

1 ADDIU R11,R10,1 F D I X0 W r C

2 MUL R5, R1, R4 F D i I Y0 Y1 Y2 Y3 W C

3 MUL R7, R5, R6 F D i I Y0 Y1 Y2 Y3 W C

4 ADDIU R12,R11,1 F D i I X0 W r C

5 ADDIU R13,R12,1 F D i I X0 W r C

6 ADDIU R14,R12,2 F D i I X0 W r C

43

Out-of-order 2-Wide Superscalar
with 1 ALU

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 MUL R1, R2, R3 F D I Y0 Y1 Y2 Y3 W C

1 ADDIU R11,R10,1 F D I X0 W r C

2 MUL R5, R1, R4 F D i I Y0 Y1 Y2 Y3 W C

3 MUL R7, R5, R6 F D i I Y0 Y1 Y2 Y3 W C

4 ADDIU R12,R11,1 F D I X0 W r C

5 ADDIU R13,R12,1 F D i I X0 W r C

6 ADDIU R14,R12,2 F D i I X0 W r C

44

Acknowledgements

• These slides contain material developed and copyright by:
– Arvind (MIT)
– Krste Asanovic (MIT/UCB)
– Joel Emer (Intel/MIT)
– James Hoe (CMU)
– John Kubiatowicz (UCB)
– David Patterson (UCB)
– Christopher Batten (Cornell)

• MIT material derived from course 6.823
• UCB material derived from course CS252 & CS152
• Cornell material derived from course ECE 4750

45

Copyright © 2013 David Wentzlaff

46

