
Computer Architecture 
ELE 475 / COS 475 

Slide Deck 2: Microcode and  
Pipelining Review 

David Wentzlaff 

Department of Electrical Engineering 

Princeton University 

1 



Agenda 

• Microcoded Microarchitectures 

• Pipeline Review 

– Pipelining Basics 

– Structural Hazards 

– Data Hazards 

– Control Hazards 

2 



Agenda 

• Microcoded Microarchitectures 

• Pipeline Review 

– Pipelining Basics 

– Structural Hazards 

– Data Hazards 

– Control Hazards 

3 



What Happens When the Processor is 
Too Large? 

• Time Multiplex Resources! 

4 



What Happens When the Processor is 
Too Large? 

• Time Multiplex Resources! 

5 



Microcontrol Unit  Maurice Wilkes, 1954      

6 

Embed the control 
logic state table in 
a memory array 

Matrix A Matrix B 

Decoder 

Next state 

op      conditional 
code   flip-flop 

  address 

Control lines  to 
ALU, MUXs, Registers 

First used in EDSAC-2, 
completed 1958 

Memory 



Microcoded Microarchitecture 

7 

Memory 
(RAM) 

Datapath 

controller 
(ROM) 

Addr Data 

zero? 
busy? 

opcode 

enMem 
MemWrt 

holds fixed 
microcode instructions  

holds user program 
written in macrocode 

instructions (e.g., x86,  
MIPS, etc.) 



A Bus-based Datapath for RISC 

8 

Microinstruction: register to register transfer  (17 control signals) 
    

enMem 

MA 

addr 

data 

ldMA 

Memory 

busy 

MemWrt 

Bus 32 

bcompare? 

 A  B 

OpSel ldA ldB 

ALU 

enALU 

ALU 
control 

2 

RegWrt 

enReg 

addr 

data 

rs1 
rs2 
rd 

32(PC) 
1(Link) 

RegSel 

32 GPRs 
+ PC ... 

 
32-bit Reg 

3 

rs1 
rs2 
rd 

ImmSel 

IR 

Opcode 

ldIR 

Imm 
Ext 

enImm 

2 



Agenda 

• Microcoded Microarchitectures 

• Pipeline Review 

– Pipelining Basics 

– Structural Hazards 

– Data Hazards 

– Control Hazards 

9 



An Ideal Pipeline 

• All objects go through the same stages 

• No sharing of resources between any two stages 

• Propagation delay through all pipeline stages is equal 

• Scheduling of a transaction entering the pipeline is not 
affected by the transactions in other stages 

• These conditions generally hold for industry assembly 
lines, but instructions depend on each other causing 
various hazards 

 

 

stage 
1 

stage 
2 

stage 
3 

stage 
4 

10 



An Ideal Pipeline 

• All objects go through the same stages 

• No sharing of resources between any two stages 

• Propagation delay through all pipeline stages is equal 

• Scheduling of a transaction entering the pipeline is not 
affected by the transactions in other stages 

• These conditions generally hold for industry assembly 
lines, but instructions depend on each other causing 
various hazards 

 

 

stage 
1 

stage 
2 

stage 
3 

stage 
4 

11 



Unpipelined Datapath for MIPS 

12 

0x4 

RegWrite 

Add 

Add 

clk 

WBSrc MemWrite 

addr 

wdata 

rdata 
Data  
Memory 

we 

RegDst BSrc ExtSel OpCode 

z 

OpSel 

clk 

zero? 

clk 

addr 
inst 

Inst. 
Memory 

PC rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

Imm 
Ext 

ALU 

ALU 
Control 

31 

PCSrc 

br 
rind 
jabs 

pc+4 



Simplified Unpipelined Datapath 

13 

addr 

wdata 

rdata 
Data 
Memory 

we 

ALU 

Imm 
Ext 

0x4 

Add 

addr 
rdata 

Inst. 
Memory 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

PC 



Pipelined Datapath 

14 

Clock period can be reduced by dividing the execution of an 
instruction into multiple cycles 
 

 tC > max {tIM, tRF, tALU, tDM, tRW} ( = tDM  probably)  
 

write 
-back 
phase 

fetch 
phase 

execute 
phase 

decode & register-
fetch phase 

memory 
phase 

addr 

wdata 

rdata 
Data 
Memory 

we 

ALU 

Imm 
Ext 

0x4 

Add 

addr 
rdata 

Inst. 
Memory 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

IR 
PC 



Pipelined Control 

15 

Clock period can be reduced by dividing the execution of an 
instruction into multiple cycles 
 

 tC > max {tIM, tRF, tALU, tDM, tRW} ( = tDM  probably)  
 

However, CPI will increase unless instructions are pipelined 

write 
-back 
phase 

fetch 
phase 

execute 
phase 

decode & register-
fetch phase 

memory 
phase 

addr 

wdata 

rdata 
Data 
Memory 

we 

ALU 

Imm 
Ext 

0x4 

Add 

addr 
rdata 

Inst. 
Memory 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

IR 
PC 



Pipelined Control 

16 

Clock period can be reduced by dividing the execution of an 
instruction into multiple cycles 
 

 tC > max {tIM, tRF, tALU, tDM, tRW} ( = tDM  probably)  
 

However, CPI will increase unless instructions are pipelined 

write 
-back 
phase 

fetch 
phase 

execute 
phase 

decode & register-
fetch phase 

memory 
phase 

addr 

wdata 

rdata 
Data 
Memory 

we 

ALU 

Imm 
Ext 

0x4 

Add 

addr 
rdata 

Inst. 
Memory 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

IR 
PC 

Hardwired 
Controller 



Pipelined Control 

17 

Clock period can be reduced by dividing the execution of an 
instruction into multiple cycles 
 

 tC > max {tIM, tRF, tALU, tDM, tRW} ( = tDM  probably)  
 

However, CPI will increase unless instructions are pipelined 

write 
-back 
phase 

fetch 
phase 

execute 
phase 

decode & register-
fetch phase 

memory 
phase 

addr 

wdata 

rdata 
Data 
Memory 

we 

ALU 

Imm 
Ext 

0x4 

Add 

addr 
rdata 

Inst. 
Memory 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

IR 
PC 

Hardwired 
Controller 



Pipelined Control 

18 

Clock period can be reduced by dividing the execution of an 
instruction into multiple cycles 
 

 tC > max {tIM, tRF, tALU, tDM, tRW} ( = tDM  probably)  
 

However, CPI will increase unless instructions are pipelined 

write 
-back 
phase 

fetch 
phase 

execute 
phase 

decode & register-
fetch phase 

memory 
phase 

addr 

wdata 

rdata 
Data 
Memory 

we 

ALU 

Imm 
Ext 

0x4 

Add 

addr 
rdata 

Inst. 
Memory 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

IR 
PC 

Hardwired 
Controller 



“Iron Law” of Processor Performance 

19 

      Time     =   Instructions         Cycles            Time 
   Program          Program    *  Instruction   *  Cycle 

Microarchitecture CPI cycle time 

Microcoded >1 short 

Single-cycle unpipelined 1 long 

Pipelined 1 short 

–Instructions per program depends on source code, 
compiler technology, and ISA 

–Cycles per instructions (CPI) depends upon the ISA 
and the microarchitecture 

–Time per cycle depends upon the microarchitecture 
and the base technology 



“Iron Law” of Processor Performance 

20 

      Time     =   Instructions         Cycles            Time 
   Program          Program    *  Instruction   *  Cycle 
–Instructions per program depends on source code, 

compiler technology, and ISA 
–Cycles per instructions (CPI) depends upon the ISA 

and the microarchitecture 
–Time per cycle depends upon the microarchitecture 

and the base technology 
Microarchitecture CPI cycle time 

Microcoded >1 short 

Single-cycle unpipelined 1 long 

Pipelined 1 short 

Multi-cycle, unpipelined control 



“Iron Law” of Processor Performance 

21 

      Time     =   Instructions         Cycles            Time 
   Program          Program    *  Instruction   *  Cycle 

Microarchitecture CPI cycle time 

Microcoded >1 short 

Single-cycle unpipelined 1 long 

Pipelined 1 short 

Multi-cycle, unpipelined control >1 short 

–Instructions per program depends on source code, 
compiler technology, and ISA 

–Cycles per instructions (CPI) depends upon the ISA 
and the microarchitecture 

–Time per cycle depends upon the microarchitecture 
and the base technology 



CPI Examples 

22 

Time 

Inst 3 

7 cycles 

Inst 1 Inst 2 

5 cycles 10 cycles 
Microcoded machine 

3 instructions, 22 cycles, CPI=7.33 

Unpipelined machine 

3 instructions, 3 cycles, CPI=1 

Inst 1 Inst 2 Inst 3 

Pipelined machine 

3 instructions, 3 cycles, CPI=1 
Inst 1 

Inst 2 
Inst 3 



Technology Assumptions 

23 

Thus, the following timing assumption is reasonable 

• A small amount of very fast memory (caches) 
   backed up by a large, slower memory  
• Fast ALU (at least for integers)  
• Multiported Register files (slower!) 

tIM tRFtALU tDM tRW 

A 5-stage pipeline will be the focus of our detailed design 
 

 - some commercial designs have over 30 pipeline 
stages to do an integer add! 



Pipeline Diagrams 

24 

write 
-back 
phase 

fetch 
phase 

execute 
phase 

decode & register-
fetch phase 

memory 
phase 

addr 

wdata 

rdata 
Data 
Memory 

we 

ALU 

Imm 
Ext 

0x4 

Add 

addr 
rdata 

Inst. 
Memory 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

IR 
PC 

Hardwired 
Controller 

We need some way to show multiple 
simultaneous transactions in both space and time 



Pipeline Diagrams: Transactions vs. Time  

25 

write 
-back 
phase 

fetch 
phase 

execute 
phase 

decode & register-
fetch phase 

memory 
phase 

addr 

wdata 

rdata 
Data 
Memory 

we 

ALU 

Imm 
Ext 

0x4 

Add 

addr 
rdata 

Inst. 
Memory 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

IR 
PC 

Hardwired 
Controller 

time   t0 t1 t2 t3 t4 t5 t6 t7 . . . . 
instruction1 IF1 ID1 EX1 MA1 WB1 

instruction2   IF2 ID2 EX2 MA2 WB2 

instruction3   IF3 ID3 EX3 MA3 WB3 

instruction4     IF4 ID4 EX4 MA4 WB4 

instruction5      IF5 ID5 EX5 MA5 WB5 



Pipeline Diagrams: Space vs. Time  

26 

write 
-back 
phase 

fetch 
phase 

execute 
phase 

decode & register-
fetch phase 

memory 
phase 

addr 

wdata 

rdata 
Data 
Memory 

we 

ALU 

Imm 
Ext 

0x4 

Add 

addr 
rdata 

Inst. 
Memory 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

IR 
PC 

Hardwired 
Controller 

time  t0 t1 t2 t3 t4 t5 t6 t7 . . . . 
IF  I1 I2 I3 I4 I5  
ID   I1 I2 I3 I4 I5 
EX            I1 I2 I3 I4 I5 

MA          I1 I2 I3 I4 I5 

WB          I1 I2 I3 I4 I5 

R
e
s
o
u
rc

e
s
 



Instructions Interact With Each Other 
in Pipeline 

• Structural Hazard: An instruction in the 
pipeline needs a resource being used by 
another instruction in the pipeline 

• Data Hazard: An instruction depends on a 
data value produced by an earlier instruction 

• Control Hazard: Whether or not an instruction 
should be executed depends on a control 
decision made by an earlier instruction 

27 



Agenda 

• Microcoded Microarchitectures 

• Pipeline Review 

– Pipelining Basics 

– Structural Hazards 

– Data Hazards 

– Control Hazards 

28 



Overview of Structural Hazards 

• Structural hazards occur when two instructions need 
the same hardware resource at the same time 

• Approaches to resolving structural hazards 
– Schedule: Programmer explicitly avoids scheduling 

instructions that would create structural hazards 
– Stall: Hardware includes control logic that stalls until 

earlier instruction is no longer using contended resource 
– Duplicate: Add more hardware to design so that each 

instruction can access independent resources at the same 
time 

• Simple 5-stage MIPS pipeline has no structural hazards 
specifically because ISA was designed that way 

29 



Example Structural Hazard:  
Unified Memory 

30 

WB IF EX ID MEM 

addr 

wdata 

rdata 
Data 
Memory 

we 

ALU 

Imm 
Ext 

0x4 

Add 

addr 
rdata 

Inst. 
Memory 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

IR 
PC 



Example Structural Hazard:  
Unified Memory 

31 

WB IF EX ID MEM 

 
 
 
 
Unified Memory 

addr 

wdata 

rdata 
Data 
Memory 

we 

ALU 

Imm 
Ext 

0x4 

Add 

addr 
rdata 

Inst. 
Memory 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

IR 
PC 

addr 

rdata 
wdata 



Example Structural Hazard:  
2-Cycle Memory 

32 

WB IF EX ID MEM 

addr 

wdata 

rdata 
Data 
Memory 

we 

ALU 

Imm 
Ext 

0x4 

Add 

addr 
rdata 

Inst. 
Memory 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

IR 
PC 

M0 
Stage 

M1 
Stage 



Agenda 

• Microcoded Microarchitectures 

• Pipeline Review 

– Pipelining Basics 

– Structural Hazards 

– Data Hazards 

– Control Hazards 

33 



Overview of Data Hazards 

• Data hazards occur when one instruction depends on a 
data value produced by a preceding instruction still in 
the pipeline 

• Approaches to resolving data hazards 
– Schedule: Programmer explicitly avoids scheduling 

instructions that would create data hazards 
– Stall: Hardware includes control logic that freezes earlier 

stages until preceding instruction has finished producing 
data value 

– Bypass: Hardware datapath allows values to be sent to an 
earlier stage before preceding instruction has left the 
pipeline 

– Speculate: Guess that there is not a problem, if incorrect 
kill speculative instruction and restart 

34 



Example Data Hazard 

 

35 

... 
r1 r0 + 10   (ADDI R1, R0, #10) 
r4 r1 + 17   (ADDI R4, R1, #17) 
... 

r1 is stale. Oops! 

r1 … r4 r1… 

IR IR IR 
31 

PC 
A 

B 

Y 

R 

MD1 MD2 

addr 
inst 

Inst 
Memory 

0x4 

Add 

IR 

Imm 
Ext 

ALU 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

wdata 

addr 

wdata 

rdata 
Data  
Memory 

we 



36 

Feedback to Resolve Hazards 

• Later stages provide dependence information to 
earlier stages which can stall (or kill) instructions  

FB1 

stage 
1 

stage 
2 

stage 
3 

stage 
4 

FB2 FB3 FB4 

• Controlling a pipeline in this manner works provided 
the instruction at stage i+1 can complete without any 
interaction from instructions in stages 1 to i   
(otherwise deadlock) 



Resolving Data Hazards with Stalls 

37 

IR IR IR 

31 

PC 
A 

B 

Y 

R 

MD1 MD2 

addr 
inst 

Inst 
Memory 

0x4 

Add 

IR 

Imm 
Ext 

ALU 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

wdata 

addr 

wdata 

rdata 
Data  
Memory 

we 

nop 

... 
r1 r0 + 10 
r4 r1 + 17 
... 

Stall Condition 
(Interlocks) 



Stalled Stages and Pipeline Bubbles 

38 

stalled stages 

time 
t0 t1 t2 t3 t4 t5 t6 t7 . . . . 

IF I1 I2 I3 I3 I3 I3 I4 I5  
ID  I1 I2 I2 I2 I2 I3 I4 I5 
EX         I1 nop nop nop I2 I3 I4 I5 

MA         I1 nop nop nop I2 I3 I4 I5 

WB         I1 nop nop nop I2 I3 I4 I5 

 
 time 
 t0 t1 t2 t3 t4 t5 t6 t7 . . . . 

(I1) r1 (r0) + 10 IF1 ID1 EX1 MA1 WB1 

(I2) r4 (r1) + 17  IF2 ID2 ID2 ID2 ID2 EX2 MA2 WB2 

(I3)      IF3 IF3 IF3 IF3 ID3 EX3 MA3 WB3 

(I4)                           IF4 ID4 EX4 MA4 WB4 

(I5)                              IF5 ID5 EX5 MA5 WB5 

Resource  
Usage 

nop       pipeline bubble 



Stall Control Logic 

39 

IR IR IR 
31 

PC 
A 

B 

Y 

R 

MD1 MD2 

addr 
inst 

Inst 
Memory 

0x4 

Add 

IR 

Imm 
Ext 

ALU 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

wdata 

addr 

wdata 

rdata 
Data  
Memory 

we 

nop 

Compare the source registers of the instruction in the decode 
stage with the destination register of the uncommitted 
instructions. 

stall 
Cstall 

ws 

rs 
rt 

? 



Stall Control Logic (ignoring jumps &branches) 

40 

Cdest 

Should we always stall if the rs field matches some rd? 

IR IR IR 

PC 
A 

B 

Y 

R 

MD1 MD2 

addr 
inst 

Inst 
Memory 

0x4 

Add 

IR 

Imm 
Ext 

ALU 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

wdata 

addr 

wdata 

rdata 
Data  
Memory 

we 

31 

nop 

stall 
Cstall 

ws 

rs 
rt 

? 

we 

re1 re2 

Cre 

ws we ws 

Cdest 
Cdest 

we 

 not every instruction writes a register we  
 not every instruction reads a register  re 



Source & Destination Registers 

41 

            source(s)   destination 
ALU rd (rs) func (rt)            rs, rt  rd 
ALUI rt (rs) op immediate  rs            rt 
LW rt M [(rs) + immediate]  rs            rt 
SW M [(rs) + immediate] (rt)          rs, rt 
BZ cond (rs) 
  true: PC (PC) + immediate rs 
  false:  PC (PC) + 4  rs 
J PC (PC) + immediate 
JAL r31 (PC), PC (PC) + immediate  31   
JR PC (rs)      rs 
JALR r31 (PC), PC (rs)    rs  31 

R-type:     op  rs       rt      rd              func 

 

I-type:     op  rs       rt       immediate16  
   

J-type:     op           immediate26  



Deriving the Stall Signal 

42 

Cdest 
ws = Case opcode 

ALU  rd 
ALUi, LW rt 
JAL, JALR R31 
 

we = Case opcode 
ALU, ALUi, LW (ws  0)  

 JAL, JALR  on 
...   off 

Cre 
re1 = Case opcode 

ALU, ALUi,   
   
  on 
  off 
 

re2 = Case opcode 
  on 
  off 

LW, SW, BZ,  
JR, JALR 
J, JAL 

ALU, SW 
... 

Cstall 
 stall = ((rsD =wsE).weE +  
   (rsD =wsM).weM +  
   (rsD =wsW).weW) . re1D    + 
  ((rtD =wsE).weE +  
   (rtD =wsM).weM +  
   (rtD =wsW).weW) . re2D 



Hazards due to Loads & Stores 

43 

... 
M[(r1)+7]  (r2)  
r4  M[(r3)+5] 
... 

IR IR IR 

31 

PC 
A 

B 

Y 

R 

MD1 MD2 

addr 
inst 

Inst 
Memory 

0x4 

Add 

IR 

Imm 
Ext 

ALU 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

wdata 

addr 

wdata 

rdata 
Data  
Memory 

we 

nop 

Stall Condition 

Is there any possible data hazard 
in this instruction sequence? 

What if 
(r1)+7 = (r3)+5 ? 



Data Hazards Due to Loads and Store 

• Example instruction sequence 
– Mem[ Regs[r1] + 7 ]  <-  Regs[r2] 
– Regs[r4] <- Mem[ Regs[r3] + 5 ] 

 

• What if Regs[r1]+7 == Regs[r3]+5 ? 
– Writing and reading to/from the same address 
– Hazard is avoided because our memory system 

completes writes in a single cycle 
– More realistic memory system will require more 

careful handling of data hazards due to loads and 
stores 

44 



Overview of Data Hazards 

• Data hazards occur when one instruction depends on a 
data value produced by a preceding instruction still in 
the pipeline 

• Approaches to resolving data hazards 
– Schedule: Programmer explicitly avoids scheduling 

instructions that would create data hazards 
– Stall: Hardware includes control logic that freezes earlier 

stages until preceding instruction has finished producing 
data value 

– Bypass: Hardware datapath allows values to be sent to an 
earlier stage before preceding instruction has left the 
pipeline 

– Speculate: Guess that there is not a problem, if incorrect 
kill speculative instruction and restart 

45 



Adding Bypassing to the Datapath 

ASrc 

 ... 
(I1) r1 r0 + 10 
(I2) r4 r1 + 17 

r4 r1... r1 ...

IR IR IR 

PC 
A 

B 

Y 

R 

MD1 MD2 

addr 
inst 

Inst 
Memory 

0x4 

Add 

IR 

Imm 
Ext 

ALU 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

wdata 

addr 

wdata 

rdata 
Data  
Memory 

we 

31 

nop 

stall 

D 

E M W 

When does this bypass help? 

r1 Mem[r0 + 10] 
r4 r1 + 17 

JAL  500 
r4 r31 + 17 

46 



Deriving the Bypass Signal 

47 

stalled stages 

 
 time 
 t0 t1 t2 t3 t4 t5 t6 t7 . . . . 

(I1) r1 (r0) + 10 IF1 ID1 EX1 MA1 WB1 

(I2) r4 (r1) + 17  IF2 ID2 ID2 ID2 ID2 EX2 MA2 WB2 

(I3)      IF3 IF3 IF3 IF3 ID3 EX3 MA3 WB3 

(I4)                           IF4 ID4 EX4 MA4 WB4 

(I5)                              IF5 ID5 EX5 MA5 WB5 

Each stall or kill introduces a bubble in the pipeline  
                        ⇒ CPI  >  1 
 

A new datapath, i.e., a bypass, can get the data from   
the output of the ALU to its input   

 time 
 t0 t1 t2 t3 t4 t5 t6 t7 . . . . 

(I1) r1 (r0) + 10 IF1 ID1 EX1 MA1 WB1 

(I2) r4 (r1) + 17  IF2 ID2 EX2 MA2 WB2 

(I3)      IF3 ID3 EX3 MA3 WB3 

(I4)                        IF4 ID4 EX4 MA4 WB4 

(I5)                           IF5 ID5 EX5 MA5 WB5 



The Bypass Signal 
Deriving it from the Stall Signal 

48 

ASrc = (rsD=wsE).weE.re1D 

we = Case opcode 
ALU, ALUi, LW (ws  0)  

      JAL, JALR       on 
...       off 

No because only ALU and ALUi instructions can benefit 
from this bypass 

Is this correct? 

Split weE into two components: we-bypass, we-stall 

stall = ( ((rsD =wsE).weE + (rsD =wsM).weM + (rsD =wsW).weW).re1D   
           +((rtD =wsE).weE + (rtD =wsM).weM + (rtD =wsW).weW).re2D )  

ws = Case opcode 
ALU  rd 
ALUi, LW rt 
JAL, JALR R31 



Bypass and Stall Signals 

49 

we-bypassE = Case opcodeE 
ALU, ALUi (ws  0)  

      ...   off 
 

ASrc  = (rsD =wsE).we-bypassE . re1D 

Split weE into two components: we-bypass, we-stall 

stall     =  ((rsD =wsE).we-stallE +  
   (rsD=wsM).weM + (rsD=wsW).weW). re1D 
              +((rtD = wsE).weE + (rtD = wsM).weM + (rtD = wsW).weW). re2D                   

we-stallE = Case opcodeE 
LW   (ws  0)  

      JAL, JALR on 
...   off 



Fully Bypassed Datapath 

50 

ASrc 
IR IR IR 

PC 
A 

B 

Y 

R 

MD1 MD2 

addr 
inst 

Inst 
Memory 

0x4 

Add 

IR ALU 

Imm 
Ext 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

wdata 

addr 

wdata 

rdata 
Data  
Memory 

we 

31 

nop 

stall 

D 

E M W 

PC for JAL, ... 

BSrc 

Is there still 
a need for the 
stall signal ? stall =   (rsD=wsE). (opcodeE=LWE).(wsE0 ).re1D 

         + (rtD=wsE). (opcodeE=LWE).(wsE0 ).re2D 



Overview of Data Hazards 

• Data hazards occur when one instruction depends on a 
data value produced by a preceding instruction still in 
the pipeline 

• Approaches to resolving data hazards 
– Schedule: Programmer explicitly avoids scheduling 

instructions that would create data hazards 
– Stall: Hardware includes control logic that freezes earlier 

stages until preceding instruction has finished producing 
data value 

– Bypass: Hardware datapath allows values to be sent to an 
earlier stage before preceding instruction has left the 
pipeline 

– Speculate: Guess that there is not a problem, if incorrect 
kill speculative instruction and restart 

51 



Agenda 

• Microcoded Microarchitectures 

• Pipeline Review 

– Pipelining Basics 

– Structural Hazards 

– Data Hazards 

– Control Hazards 

52 



Control Hazards 

• What do we need to calculate next PC? 
 
– For Jumps 

•  Opcode, offset and PC 

– For Jump Register 

• Opcode and Register value 

– For Conditional Branches 

• Opcode, PC, Register (for condition), and offset 

– For all other instructions 

• Opcode and PC 
– have to know it’s not one of above! 

 
53 



Opcode Decoding Bubble 
(assuming no branch delay slots for now) 

54 

 
 time 
 t0 t1 t2 t3 t4 t5 t6 t7 . . . . 

(I1) r1 (r0) + 10 IF1 ID1 EX1 MA1 WB1 

(I2) r3 (r2) + 17  IF2 IF2 ID2 EX2 MA2 WB2 

(I3)       IF3 IF3 ID3 EX3 MA3 WB3 

(I4)                          IF4 IF4 ID4 EX4 MA4 WB4 

 

time 
t0 t1 t2 t3 t4 t5 t6 t7 . . . . 

IF I1 nop I2 nop I3 nop I4   

ID  I1 nop I2 nop I3 nop I4 

EX         I1 nop I2 nop I3 nop I4 

MA         I1 nop I2 nop I3 nop I4 

WB         I1 nop I2 nop I3 nop I4 

Resource  
Usage 

nop       pipeline bubble CPI = 2! 



Speculate next address is PC+4 

55 

I1 096 ADD  
I2 100 J 304 
I3 104 ADD 
I4 304 ADD 

kill 

A jump instruction kills (not stalls) 
the following instruction 

stall 

How? 

I2 

I1 

104 

IR IR 

PC addr 
inst 

Inst 
Memory 

0x4 

Add 

nop 

IR 

E M 
Add 

Jump? 

PCSrc (pc+4 / jabs / rind/ br) 



Pipelining Jumps 

56 

I1 096 ADD  
I2 100 J 304 
I3 104 ADD 
I4 304 ADD 

kill 

I2 

I1 

104 

stall 

IR IR 

PC addr 
inst 

Inst 
Memory 

0x4 

Add 

nop 

IR 

E M 
Add 

Jump? 

PCSrc (pc+4 / jabs / rind/ br) 

IRSrcD = Case opcodeD 
J, JAL  nop 
...   IM 

To kill a fetched 
instruction --  Insert 
a mux before IR 

Any 
interaction 
between 
stall and 
jump? 

nop 

IRSrcD 

I2 I1 

304 
nop 



Jump Pipeline Diagrams 

57 

time 
t0 t1 t2 t3 t4 t5 t6 t7 . . . . 

IF I1 I2 I3 I4 I5  
ID  I1 I2 nop  I4 I5 
EX         I1 I2 nop  I4 I5 

MA         I1 I2 nop  I4 I5 

WB         I1 I2 nop  I4 I5 

 
 time 
 t0 t1 t2 t3 t4 t5 t6 t7 . . . . 

(I1) 096: ADD  IF1 ID1 EX1 MA1 WB1 

(I2) 100: J 304  IF2 ID2 EX2 MA2 WB2 

(I3) 104: ADD    IF3 nop  nop  nop  nop 

(I4) 304: ADD                    IF4 ID4 EX4 MA4 WB4 

Resource  
Usage 

nop       pipeline bubble 



Pipelining Conditional Branches 

58 

I1 096 ADD  
I2 100 BEQZ r1 +200 
I3 104 ADD 
 108      … 
I4 304 ADD 

BEQZ? 

I2 

I1 

104 

stall 

IR IR 

PC addr 
inst 

Inst 
Memory 

0x4 

Add 

nop 

IR 

E M 
Add 

PCSrc (pc+4 / jabs / rind / br) 

nop 

IRSrcD 

Branch condition is not known until the 
execute stage  

what action should be taken in the 
decode stage ? 

A 

Y ALU 

zero? 



Pipelining Conditional Branches 

59 

I1 096 ADD  
I2 100 BEQZ r1 +200 
I3 104 ADD 
 108      … 
I4 304 ADD 

stall 

IR IR 

PC addr 
inst 

Inst 
Memory 

0x4 

Add 

nop 

IR 

E M 
Add 

PCSrc (pc+4 / jabs / rind / br) 

nop 

IRSrcD 

A 

Y ALU 

zero? 

If the branch is taken 
- kill the two following instructions 
- the instruction at the decode stage is 
not valid 

 stall signal is not valid 

I2 I1 

108 
I3 

BEQZ? 

? 



Pipelining Conditional Branches 

60 

I1 096 ADD  
I2 100 BEQZ r1 +200 
I3 104 ADD 
 108      … 
I4 304 ADD 

stall 

IR IR 

PC addr 
inst 

Inst 
Memory 

0x4 

Add 

nop 

IR 

E M 

PCSrc (pc+4 / jabs / rind / br) 

nop A 

Y ALU 

zero? 

I2 I1 

108 
I3 

BEQZ? 

Jump? 

IRSrcD 

IRSrcE 

If the branch is taken 
- kill the two following instructions 
- the instruction at the decode stage is 
not valid 

 stall signal is not valid 

A
d
d
 

PC 



New Stall Signal 

61 

stall = (   ((rsD =wsE).weE + (rsD =wsM).weM + (rsD =wsW).weW).re1D   
           + ((rtD =wsE).weE + (rtD =wsM).weM + (rtD =wsW).weW).re2D ) 

                 . !((opcodeE=BEQZ).z + (opcodeE=BNEZ).!z) 

Don’t stall if the branch is taken. Why? 

Instruction at the decode stage is invalid 



Control Equations for PC and IR Muxes 

62 

PCSrc = Case opcodeE 
BEQZ.z, BNEZ.!z  br 
...     

  Case opcodeD 
        J, JAL jabs 

        JR, JALR rind 
        ...           pc+4 

IRSrcD = Case opcodeE 
BEQZ.z, BNEZ.!z  nop 
...    

  Case opcodeD 
        J, JAL, JR, JALR nop 
        ...          IM 

Give priority  
to the older  
instruction, 
i.e., execute-stage 
instruction 
over decode-stage 
instruction 

IRSrcE = Case opcodeE 
BEQZ.z, BNEZ.!z  nop 
...    stall.nop + !stall.IRD 



63 

time 
t0 t1 t2 t3 t4 t5 t6 t7 . . . . 

IF I1 I2 I3 I4 I5  
ID  I1 I2 I3  nop  I5 
EX         I1 I2 nop  nop  I5 

MA         I1 I2 nop  nop  I5 

WB         I1 I2 nop  nop  I5 

Branch Pipeline Diagrams 
(resolved in execute stage) 

 
 time 
 t0 t1 t2 t3 t4 t5 t6 t7 . . . . 

(I1) 096: ADD  IF1 ID1 EX1 MA1 WB1 

(I2) 100: BEQZ +200 IF2 ID2 EX2 MA2 WB2 

(I3) 104: ADD    IF3 ID3  nop  nop  nop 

(I4) 108:                      IF4 nop  nop  nop  nop 

(I5) 304: ADD                     IF5 ID5 EX5 MA5 WB5 

 

Resource  
Usage 

nop       pipeline bubble 



Reducing Branch Penalty 
(resolve in decode stage) 

64 

• One pipeline bubble can be removed if an extra 
comparator is used in the Decode stage 
– But might elongate cycle time 

PC addr 
inst 

Inst 
Memory 

0x4 

Add 

IR 

IR 
nop 

E Add 

PCSrc (pc+4 / jabs / rind/ br) 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

nop 

Zero detect on 
register file output 

Pipeline diagram now same as for jumps 

D 



Branch Delay Slots 
(expose control hazard to software) 

• Change the ISA semantics so that the instruction 
that follows a jump or branch is always executed 
– gives compiler the flexibility to put in a useful instruction where normally 

a pipeline bubble would have resulted. 

65 

I1 096 ADD  
I2 100 BEQZ r1 +200 
I3 104 ADD 
I4 304 ADD 

Delay slot instruction executed 
regardless of branch outcome 

• Other techniques include more advanced 
branch prediction, which can dramatically 
reduce the branch penalty... to come later  

 



66 

time 
t0 t1 t2 t3 t4 t5 t6 t7 . . . . 

IF I1 I2 I3 I4   
ID  I1 I2 I3  I4 
EX         I1 I2 I3  I4 

MA         I1 I2     I3     I4 

WB         I1 I2 I3     I4 

 

Branch Pipeline Diagrams 
(branch delay slot) 

 
 time 
 t0 t1 t2 t3 t4 t5 t6 t7 . . . . 

(I1) 096: ADD  IF1 ID1 EX1 MA1 WB1 

(I2) 100: BEQZ +200 IF2 ID2 EX2 MA2 WB2 

(I3) 104: ADD    IF3 ID3 EX3 MA3 WB3 

(I4) 304: ADD                    IF4 ID4 EX4 MA4 WB4 

 

Resource  
Usage 



Why an Instruction may not be 
dispatched every cycle (CPI>1) 

• Full bypassing may be too expensive to implement 
– typically all frequently used paths are provided 
– some infrequently used bypass paths may increase cycle time and 

counteract the benefit of reducing CPI 

• Loads have two-cycle latency 
– Instruction after load cannot use load result 
– MIPS-I ISA defined load delay slots, a software-visible pipeline hazard 

(compiler schedules independent instruction or inserts NOP to avoid 
hazard). Removed in MIPS-II (pipeline interlocks added in hardware) 
• MIPS:“Microprocessor without Interlocked Pipeline Stages” 

• Conditional branches may cause bubbles 
– kill following instruction(s) if no delay slots 

 
Machines with software-visible delay slots may execute significant 
number of NOP instructions inserted by the compiler. NOPs not 
counted in useful CPI (alternatively, increase instructions/program) 

67 



Other Control Hazards 

• Exceptions 

• Interrupts 

 

More on this later in the course 

68 



Agenda 

• Microcoded Microarchitectures 

• Pipeline Review 

– Pipelining Basics 

– Structural Hazards 

– Data Hazards 

– Control Hazards 

69 



Acknowledgements 

• These slides contain material developed and copyright by: 
– Arvind (MIT) 
– Krste Asanovic (MIT/UCB) 
– Joel Emer (Intel/MIT) 
– James Hoe (CMU) 
– John Kubiatowicz (UCB) 
– David Patterson (UCB) 
– Christopher Batten (Cornell) 

 

• MIT material derived from course 6.823 
• UCB material derived from course CS252 & CS152 
• Cornell material derived from course ECE 4750 

70 



 

 

 

 

 

 

Copyright © 2013 David Wentzlaff 

71 


