Computer Architecture
ELE 475 / COS 475

Slide Deck 2: Microcode and

Pipelining Review
David Wentzlaff

Department of Electrical Engineering

Princeton University

PRINCETON
?UNIHERE]TY PRINCErlQN

School of Engineering and Applied

Agenda

 Microcoded Microarchitectures
* Pipeline Review

— Pipelining Basics

— Structural Hazards

— Data Hazards
— Control Hazards

Agenda

e Microcoded Microarchitectures

What Happens When the Processor is
Too Large?

What Happens When the Processor is
Too Large?

 Time Multiplex Resources!

Microcontrol Unit wmaurice wilkes, 1954

op conditional

First used in EDSAC-2,

code flip-flop completed 1958
rd
B
/t Next state

L address
|
¥ Matrix A Matrix B

H 4 Embed the control

i

A\

r*v

ControI"I‘irnes to
ALU, MUXs, Registers

logic state table in
a memory array

Microcoded Microarchitecture

> —] .
sera>| Meontroller (— holds fixed
: microcode instructions
opcode (ROM)
-
R 4 28R 2R ’
Datapath
Data Addr
holds user program Memory “enMem

written in macrocode ., (RAM) [‘Memwrt
instructions (e.q., XSGJ)

MIPS, etc.)

A Bus-based Datapath for RISC

=i

o RegSeI
/%

Opcode bcompare?
IdIR OpSel IdA |dB
2/’ — rS
A4 4 —Prd—’ l A l A4
I | 32 GPRs
mmogel Y v 4 4 .
o 1mm] (AU]\ VY tPC
2 |L_Ext | |lcontroll \ ALU

enImmK7

enALLLS;;7

data

Bus ,32
Microinstruction: register to register transfer (17 control signals)

. RegWrt
32-bit Reg.€nReg

bu
|IdMA

MA

{5Y

|
addr

Memory

data

MemWrt

—

—

enMem

8

Agenda

* Pipeline Review

— Pipelining Basics

An |deal Pipeline

stage _,| stage [_ B | stage | W8 | stage |
— 1 [2 3 4

* All objects go through the same stages
* No sharing of resources between any two stages
* Propagation delay through all pipeline stages is equal

e Scheduling of a transaction entering the pipeline is not
affected by the transactions in other stages

10

An |deal Pipeline

stage _,| stage [_ B | stage | W8 | stage |
— 1 [2 3 4

* All objects go through the same stages
* No sharing of resources between any two stages
* Propagation delay through all pipeline stages is equal

e Scheduling of a transaction entering the pipeline is not
affected by the transactions in other stages

* These conditions generally hold for industry assembly
lines, but instructions depend on each other causing
various hazards

11

Unpipelined Datapath for MIPS

RegWrite MemWrite WBSrc
clk
| Vv
V
> rlee clk
P rs2 |
>loc »|addr - 31 rd1 & > vV we
® ws —eep | A
A . LU
> »wd rd2
<
clk Inst. GPRs R rdata
Memory r Data
| Imm Memory
FY‘ »| wdata
A
»| ALU
Control
v | ‘
OpCode RegDst ExtSel OpSel BSrc zero?

12

Simplified Unpipelined Datapath

Pipelined Datapath

0x4 a

fetch decode & register- execute memory Yl\c/)gzek
phase fetch phase phase phase bhase

Clock period can be reduced by dividing the execution of an
instruction into multiple cycles

tc > max {t,\, tre tawws tomr trwt (= toy Probably)

14

Pipelined Control

0x4 a

fetch decode & register- execute memory Yl\c/)gzek
phase fetch phase phase phase bhase

Clock period can be reduced by dividing the execution of an
instruction into multiple cycles

tc > max {t,\, tre tawws tomr trwt (= toy Probably)

15

Pipelined Control

€

\
Imm
Ext

0x4 a

I

fetch decode & register- execute memory Yl\c/)gzek
phase fetch phase phase phase bhase

Clock period can be reduced by dividing the execution of an
instruction into multiple cycles

tc > max {t,\, tre tawws tomr trwt (= toy Probably)

16

Pipelined Control

€

SN—

0x4 a

I

fetch decode & register- execute memory Yl\c/)gzek
phase fetch phase phase phase bhase

Clock period can be reduced by dividing the execution of an
instruction into multiple cycles

tc > max {t,\, tre tawws tomr trwt (= toy Probably)

However, CPIl will increase unless instructions are pipelined v

0x4 a

fetch decode & register- execute memory Yl\c/)gzek
phase fetch phase phase phase bhase

Clock period can be reduced by dividing the execution of an
instruction into multiple cycles

tc > max {t,\, tre tawws tomr trwt (= toy Probably)

However, CPIl will increase unless instructions are pipelined

“Iron Law” of Processor Performance

Time = Instructions Cycles Time
Program Program * Instruction * Cycle

—Instructions per program depends on source code,
compiler technology, and ISA

—Cycles per instructions (CPIl) depends upon the ISA
and the microarchitecture

—Time per cycle depends upon the microarchitecture
and the base technology

Microarchitecture CPI cycle time
Microcoded >1 short
Single-cycle unpipelined 1 long
Pipelined 1 short

19

“Iron Law” of Processor Performance

Time = Instructions Cycles Time
Program Program * Instruction * Cycle

—Instructions per program depends on source code,
compiler technology, and ISA

—Cycles per instructions (CPIl) depends upon the ISA
and the microarchitecture

—Time per cycle depends upon the microarchitecture
and the base technology

Microarchitecture CPI cycle time
Microcoded >1 short
Single-cycle unpipelined 1 long
Pipelined 1 short
Multi-cycle, unpipelined control

20

“Iron Law” of Processor Performance

Time = Instructions Cycles Time
Program Program * Instruction * Cycle

—Instructions per program depends on source code,
compiler technology, and ISA

—Cycles per instructions (CPIl) depends upon the ISA
and the microarchitecture

—Time per cycle depends upon the microarchitecture
and the base technology

Microarchitecture CPI cycle time
Microcoded >1 short
Single-cycle unpipelined 1 long
Pipelined 1 short
Multi-cycle, unpipelined control >1 short

21

CPl Examples

Microcoded machine Tme ——
7 cycles 5 cycles 10 cycles
A A A
f Inst 1 Y lnst2 Y Inst 3 \

(LI TTTTTTITITTTTTITTT]

3 instructions, 22 cycles, CPI=7.33

Unpipelined machine

3 instructions, 3 cycles, CPI=1

Pipelined machine

L st |
L lest2l |

3 instructions, 3 cycles, CPI=1

Technology Assumptions

e A small amount of very fast memory (caches)
backed up by a large, slower memory

e Fast ALU (at least for integers)

e Multiported Register files (slower!)

Thus, the following timing assumption is reasonable

tIM ~ tRF ~ tAl_u ~ tDM ~ tRW

A 5-stage pipeline will be the focus of our detailed design

- some commercial designs have over 30 pipeline
stages to do an integer add!

0x4 a

rite
fetch decode & register- execute memory -back
phase fetch phase phase phase phase

We need some way to show multiple
simultaneous transactions in both space and time

24

Pipeline Diagrams: Transactions vs. Time

0x4 a

i g

|

fetch decode & register-

phase

time

instructionl
instruction2
instruction3
instruction4
instruction5

I

rite
execute memory -back
fetch phase phase phase phase
t0 t1 t2 t3 |t4 |t5 t6 t7
IF, ID, EX, MA,|WB,
IF, ID, EX,|MA,|wB,
IF, ID; |EX;|MA; WB,
IF, | ID, |EX, MA, WB,
IF. |ID: EX: MA; WB.

Pipeline Diagrams: Space vs. Time
),

/

|

I

rite
fetch decode & register- execute memory -back
phase fetch phase phase phase phase
time tO t1 t2 t3 | t4 | t5 t6 t7
g IF I, I, I, I,| L
S D I, I, IL|1I,| L
S EX I, I, | I;| I, I
L MA I, | I, | I, I, I

Instructions Interact With Each Other
in Pipeline

* Structural Hazard: An instruction in the
pipeline needs a resource being used by
another instruction in the pipeline

* Data Hazard: An instruction depends on a
data value produced by an earlier instruction

* Control Hazard: Whether or not an instruction
should be executed depends on a control
decision made by an earlier instruction

Agenda

* Pipeline Review

— Structural Hazards

Overview of Structural Hazards

Structural hazards occur when two instructions need
the same hardware resource at the same time

Approaches to resolving structural hazards

— Schedule: Programmer explicitly avoids scheduling
instructions that would create structural hazards

— Stall: Hardware includes control logic that stalls until
earlier instruction is no longer using contended resource

— Duplicate: Add more hardware to design so that each
instruction can access independent resources at the same
time

Simple 5-stage MIPS pipeline has no structural hazards
specifically because ISA was designed that way

IF

Example Structural Hazard:
Unified Memory

ID EX MEM

Example Structural Hazard:
Unified Memory

Example Structural Hazard:

2-Cycle Memory

MO M1
Stage Stage

. rl(}'f

IF ID EX vV EM WB

32

Agenda

* Pipeline Review

— Data Hazards

Overview of Data Hazards

e Data hazards occur when one instruction depends on a
data value produced by a preceding instruction still in
the pipeline

* Approaches to resolving data hazards

— Schedule: Programmer explicitly avoids scheduling
instructions that would create data hazards

— Stall: Hardware includes control logic that freezes earlier
stages until preceding instruction has finished producing
data value

— Bypass: Hardware datapath allows values to be sent to an
earlier stage before preceding instruction has left the
pipeline

— Speculate: Guess that there is not a problem, if incorrect
kill speculative instruction and restart

Example Data Hazard

r4 « rl .. rl « ...
0x4 I
L r
vVowe LTN
»rsl
»rs2 v
— »laddr rdl vVowe
inst WS
»lwd rd2 — addr
Inst GPRs R rdata
Memory, 1 Data
»] Imm Memory
Ext Plwdata
MD1 MD2

rl«r0O+ 10 (ADDIR1, RO, #10)
r4 «—rl + 17 (ADDI R4, R1, #17) r1 is stale. Oops!

35

Feedback to Resolve Hazards

Ml

FBy

|

stage]
1

stageg

2

—_

f FB; <

-

—

stagg |
3

FB,

l

stage

* Later stages provide dependence information to
earlier stages which can stall (or kill) instructions

* Controlling a pipeline in this manner works provided
the instruction at stage i+1 can complete without any

interaction from instructions in stages 1 to i
(otherwise deadlock)

36

Resolving Data Hazards with Stalls

rlock
Stall Condition (Inte OC S)

31 l

0Ox4 hop _I4L| : :I
L L -

——Z__\

y
vowe

= »rsil
»lrs2 !
> »laddr rdi i
inst WS
»|lwd rd2 p——e—> addr
inst GPRs > rdata >
Memory "Lt Data
»] Imm Memory >
Ext Plwdata
q MD1 MD2
ri «r0O+ 10

rd «rl1 + 17

37

Stalled Stages and Pipeline Bubbles

time
tO t1 t2 t3 t4 t5 t6 t7
(I,) r1 «(r0) + 10 IF; ID, E T WBi—,
(I,) r4 « (r1) + 17 IF, ' ID, ID, ID, ID, EX, MA, WB,
(I) IF; IF; IF; IF; ID; EX; MA; WB;
stalled stages
(I) IF: IDs EXs MA; WBg
time
tO t1 t2 t3 t4 t5 t6 t7
IF I, I, I3 I3 I3 I3 I
ID I, 'L, L, I, I, I I
'Zizggrce EX I, nop nopnopl, I3 I, I
MA I, nop nop nop I, I; I
WB I, nop nop nop I, I; I

nop = pipeline bubble

38

Stall Control Logic

stall ws
CstaII
rs 2
/ re
Ox4 nop I I ;
5, — | I3t
V_We
T > rsi
v »lrs2 Jv
ey »laddr rdi Vwe
inst WS
»lwd rd2 —ea— addr
Inst GPRs ‘ rdata R
Memory, e Data
o] Imm Memory, >
Ext Plwdata
MD1 MD2

Compare the source registers of the instruction in the decode
stage with the destination register of the uncommitted

instructions.

Stall Control Logic (ignoring jumps &branches)

ws

stall

we _
Cstal »
IS ? f | ’
/ rt b we | lws we WS
re 1T T re2 Cyest Caest
N |
e v 1
0x4 | nop ™ I I I
L S 31 -
y Cdest “
vV owe
\ 4 >

v

vy

rsl
v rs2 il
— addr rdi vwe
inst WS addr
wd rd2 —-—»j

Inst GPRs rdata .
Memory| s Data
o] Imm Memory
Ext Plwdata
MD1 MD2

Should we always stall if the rs field matches some rd?
not every instruction writes a register = we
not every instruction reads a register = re 40

Source & Destination Registers

R-type: op rs rt rd func
I-type: op rs rt immediatel6
J-type: op immediate26
source(s) destination
ALU rd « (rs) func (rt) rs, rt rd
ALUI rt « (rs) op immediate rs rt
LW rt < M [(rs) + immediate] rs rt
SW M [(rs) + immediate] « (rt) rs, rt
BZ cond (rs)
true: PC « (PC) + immediate rs
false: PC <« (PC) + 4 rs
J PC « (PC) + immediate
JAL r31 « (PC), PC « (PC) + immediate 31
JR PC « (rs) rs

JALR 31 « (PC), PC « (rs) rs 31

Deriving the Stall Signal

Cdest
ws = (Case opcode
ALU = rd
ALUi, LW = rt
JAL, JALR = R31

we = (Case opcode
ALU, ALUi, LW =(ws = 0)

C

re

rel = Case opcode
ALU, ALUi,

re2 = Case opcode

— 0N
= Off

JAL, JALR = 0n = 0n
= off = off
CstaII
stall = ((rsp =wsg).weg + « ‘

(rsp =wsy).wey + '600 &od
(rsp =wsy).wey) . rely + & 0\\9
((rty =wsg).weg + AN
(rt; =wsy).wey, + NS
(rtp =wsy).wey) . re2,

42

Hazards due to Loads & Stores

Stall Condition

What if
J (r1)+7 = (r3)+57?
0x4 nop _I\l R :I
5, I — |3t
vWe Lr
A »rsl
»|rs2 v
> »laddr rdl vVowe
inst ; ag rd2 w addr
Inst GPRs \J rdata
Memory, e ¥ Data
»| Imm Memory
Ext I I Plwdata
MD1 MD2
M[(r1)+7] « (r2) Is there any possible data hazard

r4 <« M[(r3)+5] in this instruction sequence?
43

Data Hazards Due to Loads and Store

* Example instruction sequence
— Mem|[Regs[rl] + 7] <- Regs[r2]
— Regs[r4] <- Mem[Regs[r3] + 5]

 What if Regs[r1]+7 == Regs[r3]+5 ?
— Writing and reading to/from the same address

— Hazard is avoided because our memory system
completes writes in a single cycle

— More realistic memory system will require more
careful handling of data hazards due to loads and
stores

Overview of Data Hazards

e Data hazards occur when one instruction depends on a
data value produced by a preceding instruction still in
the pipeline

* Approaches to resolving data hazards

— Schedule: Programmer explicitly avoids scheduling
instructions that would create data hazards

— Stall: Hardware includes control logic that freezes earlier
stages until preceding instruction has finished producing
data value

— Bypass: Hardware datapath allows values to be sent to an
earlier stage before preceding instruction has left the
pipeline

— Speculate: Guess that there is not a problem, if incorrect
kill speculative instruction and restart

45

Adding Bypassing to the Datapath

stall
r4 <« rl.. rl «..
Ox4 nop —Ii| . E ;I M ~I_VV
= =7
ASrc|) w
vWe
- >rsl ﬁ
el —]addr D 1% s s
inst i wz rd2 - w addr
Inst GPRs \J rdata o=
Memory "L Data
J Tmm I I Memory >
Ext Plwdata
MD1 MD2
When does this bypass help?
(I;) rl«r0+10 r1 « Mem[r0 + 10] | JAL 500

() rd«rl+17 4 «rl+ 17

r4 < r31 + 17
4

6

Deriving the Bypass Signal

time

t0O t1 t2 t3 t4 t5 t6 t7
(I,) r1 «(r0) + 10 IF, ID, E — WB1—,
(I,) r4 « (r1) + 17 IF, ID, ID, ID, ID, EX, MA, WB,
(L) IF, IF; IF; IF, ID, EX; MA; WB,

stalled stages
(1) IF. ID: EX; MA:; WB.
Each stall or kill introduces a bubble in the pipeline
= CPlI > 1

A new datapath, i.e., a bypass, can get the data from

the output of the ALU to its input
time
t0 t1 . t2 t3 t4 t5 t6 t7
(I;) rl « (r0) + 10 IF; ID, EX]NXA; WB,
(I,) r4 <« (r1) + 17 IF, ID, EX, MA, WB,
(L) IF, ID; EX; MA; WB;

(Is) IF. ID. EX: MA: WB. 47

The Bypass Signal

Deriving it from the Stall Signal

stall = (<rsg=ws=wer + (rsp =Wsy).wey + (rsp =ws,y).wey).rely

+((rty =wsg).weg + (rtp =wsy).wey + (rtp =wsy,).wey).re2y)

ws = Case opcode we = Case opcode
ALU = rd ALU, ALUi, LW =(ws = 0)
ALUi, LW =t JAL, JALR = 0on
JAL, JALR = R31 = off
ASrc = (rsp=wsg).weg.relg Is this correct?

No because only ALU and ALUi instructions can benefit
from this bypass

Split we; into two components: we-bypass, we-stall

48

Bypass and Stall Signals

Split weg into two components: we-bypass, we-stall

we-bypassg = Case opcodeg we-stall = Case opcodeg
ALU, ALUi = (ws = 0) LW = (ws = 0)
= off JAL, JALR =on
= off
ASrc = (rsp =wsg).we-bypass; . rel,
stall = ((rsp=wsg).we-stallg +

(rsp=wWsy).wey + (rsp=wsy).wey). rel,
+((rty = wsg).wee + (rty = wsy).wey + (rty = wsy).wey). re2,

49

Fully Bypassed Datapath

stall

PC for JAL, ...

0x4 a

\4

v
nop - :II £ :II M :II__
ASrc L/ —— Eﬂ -

rsi

\ A 4

rs2

Inst
Memory|

Is there still
a need for the
stall signal ?

> »laddr
inst

vVowe

Ext

Imm “r

rdlfp=—- VI—' I V-we
WS »|addr
> Wd rd2 -
s
GPRs A\J rdata >
i I I Data

Memory
Plwdata

T ‘BSrc

MD1 MD2

stall =

(rsp=wsg). (opcode=LW¢).(ws=0).rel,
+ (rtp=wsg). (opcodeg=LW¢).(wsg=0).re2,

50

Overview of Data Hazards

e Data hazards occur when one instruction depends on a
data value produced by a preceding instruction still in
the pipeline

* Approaches to resolving data hazards

— Schedule: Programmer explicitly avoids scheduling
instructions that would create data hazards

— Stall: Hardware includes control logic that freezes earlier
stages until preceding instruction has finished producing
data value

— Bypass: Hardware datapath allows values to be sent to an
earlier stage before preceding instruction has left the
pipeline

— Speculate: Guess that there is not a problem, if incorre \Cad
kill speculative instruction and restart e‘-\(\c

*

\,‘a 51

Agenda

* Pipeline Review

— Control Hazards

Control Hazards

e What do we need to calculate next PC?

— For Jumps
* Opcode, offset and PC
— For Jump Register
* Opcode and Register value
— For Conditional Branches
* Opcode, PC, Register (for condition), and offset
— For all other instructions
* Opcode and PC

— have to know it’s not one of above!

Opcode Decoding Bubble

(assuming no branch delay slots for now)

time
t0O t1 t2 t3 t4 t5 t6 t7
(I;) r1 «(r0) + 10 IF; ID, EX; MA; WB;
(I,) r3 « (r2) + 17 IF, IF, ID, EX, MA, WB,
(I) IF; IF; ID; EX5; MA; WB;

time
tO t1 t2 t3 t4 t5 t6 t7
IF I, nop I, nop I nop

Resource ID I, nop I, nop I3 nop

Usage EX I, nopl, nopIl; nop I,
MA I, nop I, nop I3 nop
WB I, nop I, nop I3 nop

CPI = 2! nop = pipeline bubble .,

Speculate next address is PC+4

PCSrc (pc+4 / jabs / rind/ br) stall

& /2\

0x4 ﬁ ﬁ
—

E
\4
I

Jump?

> »|addr
inst > IR:

104 Inst
Memory, I,
096 ADD . . .)
100] 304 A jump instruction kills (not stalls)

104—ADD— kil the following instruction
304 ADD How?

55

PCSr|c (pc+4 / jabs / rind/ br) otg/|
Py

Pipelining Jumps

To kill a fetched

\4

»
>

304

|}L: instruction -- Insert
Q /Zd_dx a mux before IR
"z E M
0x4 ﬁ () nop — v I ‘I
: —> Jump? I, I,
IRSrcp ‘ Any
»[addr ﬂp—:‘ﬁ-l interaction
inst ——p
Inst between
memony - stall and
— jump?
096 ADD IRSchDJ;\LCase opcode, JUMP
100 J 304 ' z ?l\c/)lp
—104—ADD— Kill
304 ADD

56

Jump Pipeline Diagrams

(I,) 096: ADD
(I,) 100:] 304
(I,) 104: ADD

304: ADD
IF
ID
Resource
U EX
sage MA
WB

time
t0
IF,

t1
ID,
IF,

time

t0 t1

L L
I1

t2 t3 t4 t5 t6 t7
EX; MA; WB,
ID,_ EX, MA, WB,
IF; "nop nop nop nop
t2 t3 t4 t5 t6 t/
I5 I
I, nop Is
I, I, nop I, Is

I, I, nop I

I, I, nop I
nop = pipeline bubblg

Pipelining Conditional Branches

PCSrc (pc+4 / jabs / rind / br)

stall

[\
y ¥ NAK

[T

104

096
100
104
108
304

»|addr

Inst

inst

Memory

ADD

—> BEQZ?

IRSrcp
v
nop>-w %] II‘
I,

RN =

E
\4
nop - :l II
I1 4

A

Zero?

Branch condition is not known until the

BEQZ r1 +200 eXxecute stage

ADD

ADD

what action should be taken in the
decode stage ? 58

Pi

pelining Conditional Branches

PCSrc| (pc+4 / jabs / rind / br) stall

g ?

E
\4 A
Cf i IR
I;

Q: [0\ T
"\ BEQZ? M

108

096
100
104
108
304

zero?
IRSrcp ‘
> addl’inst ﬂ:ﬁ_l__, 2
Inst
Memory| I3
If the branch is taken
ADD . L :
BEQZ r1 +200 kill t.he two followmg instructions |
ADD - the instruction at the decode stage is
not valid
ADD 59

= stall signal is not valid

Pi

pelining Conditional Branches

PCSrc (p|c+4/jabs /rind / br) stall

g

Add

l
<
<
-
<«

v

n
>

108

096
100
104
108
304

IRSrc E | BEQz? M
0x4 nop - _»I 11 I
5 iy e
—> Jumpp I, I
zero?
o IRSrcy
»1 d r —
inst nop —> R —) _
Inst
Memory| I3
If the branch is taken
ADD - kill the two following instructions
BEQZ r1 +200 &
ADD - the instruction at the decode stage is
not valid
ADD 60

= stall signal is not valid

New Stall Signal

stall = (((rsp=wsg).we + (rsp =ws,,).we,, + (rsp, =ws,,).we,,).rel,
+ ((rty =wsg).weg + (rty =ws,,).we,, + (rty =ws,,).we,,).re2,)
. I((opcode,=BEQZ).z + (opcode.=BNEZ).!z)

Don’t stall if the branch is taken. Why?

Instruction at the decode stage is invalid

61

Control Equations for PC and IR Muxes

PCSrc = Case opcode,
BEQZ.z, BNEZ.'z = br

f—
Case opcodeg
J, JAL = jabs
JR, JALR = rind

= pc+4

IRSrc, = Case opcodeg
BEQZ.z, BNEZ.'z = nop
Case opcode,
J, JAL, JR, JALR = nop
= IM

Give priority

to the older
Instruction,

l.e., execute-stage
Instruction

over decode-stage
Instruction

IRSrcg = Case opcodeg
BEQZ.z, BNEZ.!z = nop

— stall.nop + Istall.IR,

62

Branch Pipeline Diagrams

(resolved in execute stage)

time
tO t1 t2 t3 t4 t5 t6 t/

(I,) 096: ADD IF, ID; EX; MA; WB;

(I,) 100: BEQZ +200 IF, ID, EX, MA, WB,

(1,) 104: ADD IF, Qop nop nop
108: Oop nhop nop nop
304: ADD

time
tO t1 t2 t3 t4 t5 t6 t/
IF I, I, Ij I
ID I I I nop 1
Resource EX 1 Ii Iz nop nsop I
Usage MA I, I, nop nop Ig
WB I, I, nop nop I

nop = pipeline bubble

63

Reducing Branch Penalty

(resolve in decode stage)

* One pipeline bubble can be removed if an extra
comparator is used in the Decode stage

— But might elongate cycle time
PCSrc (pc+4 / jabs / rind/ br)

0x4

Add

! R p ik

»|addr

inst

Inst
Memory|

Zero detect on
s register file output
rsi -
rs2 .
nop " I_,I rd1 g
— > WS
wd rd24——
GPRs

Pipeline diagram now same as for jumps,,

Branch Delay Slots

(expose control hazard to software)

* Change the ISA semantics so that the instruction
that follows a jump or branch is always executed

— gives compiler the flexibility to put in a useful instruction where normally
a pipeline bubble would have resulted.

I, 096 ADD

%2 182 i[E)%Z "1 +200 Delay slot instruction executed

13 304 ADD) regardless of branch outcome
4

 Other techniques include more advanced
branch prediction, which can dramatically
reduce the branch penalty... to come later

Branch Pipeline Diagrams
(branch delay slot)

time
t0O t1 t2 t3 t4 t5 t6 t7
(I,) 096: ADD IF, ID, EX; MA,; WB;
(I,) 100: BEQZ +200 IF, ID, EX, MA, WB,
(I5) 104: ADD IF; ID; EX5; MA; WBs;
304: ADD
time

t0 t1 t2 t3 t4 t5 t6 t7
IF I, I, I

ID I I I
Resource £ ! 12 13 I
1 2 3
Usage MA L 1L

WB I I, I

66

Why an Instruction may not be
dispatched every cycle (CPI>1)

* Full bypassing may be too expensive to implement
— typically all frequently used paths are provided

— some infrequently used bypass paths may increase cycle time and
counteract the benefit of reducing CPI

* Loads have two-cycle latency
— Instruction after load cannot use load result

— MIPS-I ISA defined load delay slots, a software-visible pipeline hazard
(compiler schedules independent instruction or inserts NOP to avoid
hazard). Removed in MIPS-II (pipeline interlocks added in hardware)

« MIPS:“Microprocessor without Interlocked Pipeline Stages”
e Conditional branches may cause bubbles
— kill following instruction(s) if no delay slots

Machines with software-visible delay slots may execute significant
number of NOP instructions inserted by the compiler. NOPs not
counted in useful CPI (alternatively, increase instructions/program)

Other Control Hazards

* Exceptions
* |nterrupts

More on this later in the course

Agenda

 Microcoded Microarchitectures
* Pipeline Review

— Pipelining Basics

— Structural Hazards

— Data Hazards
— Control Hazards

Acknowledgements

These slides contain material developed and copyright by:
— Arvind (MIT)
— Krste Asanovic (MIT/UCB)
— Joel Emer (Intel/MIT)
— James Hoe (CMU)
— John Kubiatowicz (UCB)
— David Patterson (UCB)
— Christopher Batten (Cornell)

MIT material derived from course 6.823
UCB material derived from course CS252 & CS152
Cornell material derived from course ECE 4750

Copyright © 2013 David Wentzlaff

