Computer Architecture, Problem Set #1A
Note: We have procured permission to post these problems from Computer Architecture: A
Quantitative Approach from the publisher, and will be using the original problems as the supplement.

Problem #3 (20 Points): Page C-82 in H&P5, Problem C.1 a,b,c,d,e,f,g

C.1 [15/15/15/15/25/10/15] <A.2> Use the following code fragment:

Loop: LD R1,0(R2) ;1oad R1 from address 0+R?
DADDI R1,R1,#1 ;R1=R1+1
SD R1,0, (R2) ;Store R1 at address 0+R2
DADDI R2,R2,#4 ;R2=R2+4
DSUB R4,R3,R2 ; R4=R3-R2
BNEZ R4, Loop sbranch to Loop if R4!=0

Assume that the initial value of R3 is R2 + 396,

a. [I5] <C.2> Data hazards are caused by data dependences in the code.
Whether a dependency causes a hazard depends on the machine implementa-
tion (i.e., number of pipeline stages). List all of the data dependences in the
code above. Record the register, source instruction, and destination instruc-

tion; for example, there is a data dependency for register R1 from the LD to
the DADDI.

b. [15] <C.2> Show the timing of this instruction sequence for the 5-stage RISC
pipeline without any forwarding or bypassing hardware but assuming that a
register read and a write in the same clock cycle “forwards” through the reg-
ister file, as shown in Figure C.6. Use a pipeline timing chart like that in Fig-
ure C.5. Assume that the branch is handled by flushing the pipeline. If all
memory references take 1 cycle, how many cycles does this loop take to exe-
cute?

C. [15]<C.2> Show the timing of this instruction sequence for the S-stage RISC
pipeline with full forwarding and bypassing hardware. Use a pipeline timing
chart like that shown in Figure C.5. Assume that the branch is handled by
predicting it as not taken. If all memory references take 1 cycle, how many
cycles does this loop take to execute?

d. [15] <C.2> Show the timing of this instruction sequence for the 5-stage RISC
pipeline with full forwarding and bypassing hardware. Use a pipeline timing
chart like that shown in Figure C.5. Assume that the branch is handled by
predicting it as taken. If all memory references take 1 cycle, how many cycles
does this loop take to execute?

Copyright © 2011, Elsevier Inc. All rights Reserved

e. [25] <C.2> High-performance processors have very deep pipelines—more
than 15 stages. Imagine that you have a 10-stage pipeline in which every stage
of the 5-stage pipeline has been split in two. The only catch is that, for data
forwarding, data are forwarded from the end of a pair of stages to the begin-
ning of the two stages where they are needed. For example, data are forwarded
from the output of the second execute stage to the input of the first execute
stage, still causing a I-cycle delay. Show the timing of this instruction
sequence for the 10-stage RISC pipeline with full forwarding and bypassing
hardware. Use a pipeline timing chart like that shown in Figure C.5. Assume

that the branch is handled by predicting it as taken. If all memory references
take 1 cycle, how many cycles does this loop take to execute?

f. [10] <C.2> Assume that in the 5-stage pipeline the longest stage requires 0.8
ns, and the pipeline register delay is 0.1 ns. What is the clock cycle time of
the 5-stage pipeline? If the 10-stage pipeline splits all stages in half, what is
the cycle time of the 10-stage machine?

g. [15] <C.2> Using your answers from parts (d) and (e), determine the cycles
per instruction (CPI) for the loop on a 5-stage pipeline and a 10-stage pipe-
line. Make sure you count only from when the first instruction reaches the
write-back stage to the end. Do not count the start-up of the first instruction.
Using the clock cycle time calculated in part (f), calculate the average
instruction execute time for each machine.

Copyright © 2011, Elsevier Inc. All rights Reserved

Problem #4 (10 Points): Page B-60 in H&P5, Problem B.2 a,b

B.2 [15/15] <B.1> For the purpose of this exercise, we assume that we have 512-byte -
cache with 64-byte blocks. We will also assume that the main memory is 2 KB
large. We can regard the memory as an array of 64-byte blocks: MO, M1, ..., M31.
Figure B.30 sketches the memory blocks that can reside in different cache blocks

if the cache was fully associative.

a. [15] <B.1> Show the contents of the table if cache is organized as a direct-
mapped cache.

b. [15] <B.1> Repeat part (a) with the cache organized as a four-way set assoclative
cache.

Memory blocks that can reside in

Cache block Set Way cache block
0 0 0 MO, M1, M2, ..., M31
1 0 1 MO, M1, M2, ..., M31
2 0 2 MO, M1, M2, ..., M31
3 0 3 MO, M1, M2, ..., M31
4 0 4 MO, M1, M2, ..., M31
5 0 5 MO, M1, M2, ..., M31
6 0 6 MO, M1, M2, ..., M31
7 0 7 MO, M1, M2, ..., M31

Figure B.30 Memory blocks that can reside in cache block.

Copyright © 2011, Elsevier Inc. All rights Reserved

Problem #7 (20 Points): Page C-85 in H&P5, Problem C.6 a,b,c,d,e

For problem 7: assume that only sources can use the new addressing mode.

C6

[12/13/13/15/15] <C.1, C.2, C.3> We will now add support for register-memory
ALU operations to the classic five-stage RISC pipeline. To offset this increase in
complexity, all memory addressing will be restricted to register indirect (ie., all
addresses are simply a value held in a register; no offset or displacement may be
added to the register value). For example, the register-memory instruction ADD
R4, R5, (R1) means add the contents of register RS to the contents of the mem-
ory location with address equal to the value in register R1 and put the sum in reg-
ister R4. Register-register ALU operations are unchanged. The following items
apply to the integer RISC pipeline:

a.

[12] <C.1> List a rearranged order of the five traditional stages of the RISC
pipeline that will support register-memory operations implemented exclu-
sively by register indirect addressing.

[13] <C.2, C.3> Describe what new forwarding paths are needed for the rear-
ranged pipeline by stating the source, destination, and information transferred
on each needed new path.

[13] <C.2, C.3> For the reordered stages of the RISC pipeline, what new data
hazards are created by this addressing mode? Give an instruction sequence
illustrating each new hazard.

[15] <C.3> List all of the ways that the RISC pipeline with register-memory
ALU operations can have a different instruction count for a given program
than the original RISC pipeline. Give a pair of specific instruction sequences,
one for the original pipeline and one for the rearranged pipeline, to illustrate
each way.

[15] <C.3> Assume that all instructions take 1 clock cycle per stage. List all
of the ways that the register-memory RISC can have a different CPI for a
given program as compared to the original RISC pipeline.

Copyright © 2011, Elsevier Inc. All rights Reserved

Problem #8 (10 Points): Using graph B.9 on page H&P5 B-25 and table B.8 on page B-24. Which has a
lower miss rate, a 256KB direct mapped cache or a 64-KB 8-way cache? Which of the three C’s drives
the previous result?

0.10
0.09 1
0.084

o 007N A o 1-way
o : M 2-way
% 0.06 @ 4-way
2 O 8-way .
o 0.05 B Capacity
© 0O Compulsory
» 0.04
i)
= 0.03
0.02
0.01
0.00
4 8 16 32 64 128 256 512 1024
Cache size (KB)
100%
80%
@
a
2 60%
@
a
B
© W 1-way
o 40% @ 2-way
(2]
s B 4-way
O 8-way
20% M Capacity

O Compulsory

& 8 16 32 64 128 256 512 1024
Cache size (KB)

Figure B.9 Total miss rate (top) and distribution of miss rate (bottom) for each size cache according to
the three C’s for the data in Figure B.8. The top diagram shows the actual data cache miss rates, while
the bottom diagram shows the percentage in each category. (Space allows the graphs to show one
extra cache size than can fit in Figure B.8.)

Copyright © 2011, Elsevier Inc. All rights Reserved

Miss rate components (relative percent)

{sum = 100% of total miss rate)

Degree Total miss : -
Cache size (KB) associative rate Compulsory Capacity Conflict

4 ' I-way 0.098 00001 0.1% 0070 72% 0027 28%

4 2-way 0.076 00001 0.1% 0070 93% 0005 7%
4 4-way 0.071 00001 0.1% 0.070 99% 0.001 1%

4 8-way 0.071 0.0001 0.1% 0070 100% 0.000 0%

8 I-way 0.068 0.0001 0.1% 0044 65% 0024 35%

o 8 2-way 0.049 00001 0.1% 0044 90% 0005 10%
- 8 4-way 0.044 00001 0.1% 0044 99% 0000 1%
8 8-way 0.044 00001 0.1% 0044 100% 0.000 0%

16 1-way 0.049 00001 0.1% 0040 8% 0.009 17%

16 2-way 0.041 00001 0.2% 0.040 98% 0.001 2%

16 4-way 0.041 0.0001 02% 0040 99% 0.000 0%

16 8-way 0.041 0.0001 02% 0.040 100% 0.000 0%

32 1-way 0.042 00001 02% 0037 89% 0.005 11%

32 2-way 0.038 0.0001 0.2% 0037 99% 0.000 0%

32 4-way 0.037 00001 0.2% 0037 100% 0.000 0%

32 8-way 0.037 00001 02% 0037 100% 0000 0%

T 64 I-way 0.037 00001 0.2% 0028 77% 0.008 23%
64 2 way 0.031 0.0001 02% 0028 91% 0003 9%

64 4-way 0.030 00001 0.2% 0.028 95% 0001 4%

64 8-way 0.029 00001 02% 0028 97% 0.001 2%

128 T I-way 0.021 00001 0.3% 0019 91% 0002 8%

128 2-way 0.019 00001 0.3% 0019 100% 0.000 0%

128 4way 0.019 00001 03% 0019 100% 0.000 0%

128 8-way 0.019 00001 03% 0019 100% 0.000 0%

o 256 L-way 0.013 00001 0.5% 0012 9% 0001 6%
256 2-way 0.012 00001 0.5% 0012 99% 0.000 0%

256 4fway 0012 00001 0.5% 0012 99% 0000 0%

256 8-way 0.012 0.0001 0.5% 0012 99% 0000 0%

o 512 1-way 0.008 0.0001 08% 0.005 66% 0.003 33%
512 2-way 0.007 0.0001 09% 0005 T1% 0002 28%

512 d-way 0.006 0.0001 1.1% 0005 91% 0000 8%

o 512 8-way 0.006 0.0001 1.1% 0005 95% 0.000 4%

Figure B.8 Total miss rate for each size cache and percentage of each according to the three C's. Compulsory
misses are independent of cache size, while capacity misses decrease as capacity increases, and conflict misses
decrease as associativity increases. Figure B.9 shows the same information graphically. Note that a direct-mapped
cache of size N has about the same miss rate as a two-way set-associative cache of size N/2 up through 128 K. Caches
larger than 128 KB do not prove that rule. Note that the Capacity column is also the fully associative miss rate. Data

were collected as in Figure B.4 using LRU replacement.

Copyright © 2011, Elsevier Inc. All rights Reserved

