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Application Requirements: 
• Suggest how to improve architecture 
• Provide revenue to fund development 

Technology Constraints: 
• Restrict what can be done efficiently 
• New technologies make new arch 

possible 

Architecture provides feedback to guide  
application and technology research 
directions 
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Computers Then… 

IAS Machine. Design directed by John von Neumann. 
First booted in Princeton NJ in 1952   
Smithsonian Institution Archives  (Smithsonian Image 95-06151) 
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Computers Now 
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Robots 

Supercomputers 
Automobiles 

Laptops 

Set-top 
boxes 

Smart 
phones 

Servers 
Media 
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Sensor Nets 

Routers 
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[from Kurzweil] 

Major 
Technology 
Generations Bipolar 
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Sequential Processor Performance 
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Sequential Processor Performance 
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Move to multi-processor 
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Course Structure 

• Recommended Readings 

• In-Lecture Questions 

• Problem Sets 

– Very useful for exam preparation 

– Peer Evaluation 

• Midterm 

• Final Exam 

17 



Course Content Computer 
Organization (ELE 375) 

Computer Organization 

• Basic Pipelined 
Processor 

 

~50,000 Transistors 

 

Photo of Berkeley RISC I, © University of California (Berkeley) 
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Course Content Computer 
Architecture (ELE 475) 

 

Intel Nehalem Processor, Original Core i7, Image Credit Intel: 
http://download.intel.com/pressroom/kits/corei7/images/Nehalem_Die_Shot_3.jpg 
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Intel Nehalem Processor, Original Core i7, Image Credit Intel: 
http://download.intel.com/pressroom/kits/corei7/images/Nehalem_Die_Shot_3.jpg 

~700,000,000 Transistors 

Computer Organization  
(ELE 375) Processor 

• Instruction Level Parallelism 
– Superscalar 
– Very Long Instruction Word (VLIW) 

• Long Pipelines (Pipeline 
Parallelism) 

• Advanced Memory and Caches 
• Data Level Parallelism 

– Vector 
– GPU 

• Thread Level Parallelism 
– Multithreading 
– Multiprocessor 
– Multicore 
– Manycore 
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Architecture vs. Microarchitecture 

“Architecture”/Instruction Set Architecture: 

• Programmer visible state (Memory & Register) 
• Operations (Instructions and how they work) 
• Execution Semantics (interrupts) 
• Input/Output 
• Data Types/Sizes 
Microarchitecture/Organization: 
• Tradeoffs on how to implement ISA for some metric 

(Speed, Energy, Cost) 
• Examples: Pipeline depth, number of pipelines, cache 

size, silicon area, peak power, execution ordering, bus 
widths, ALU widths 
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Software Developments 

24 

up to 1955 Libraries of numerical routines 
   - Floating point operations 
    - Transcendental functions 
    - Matrix manipulation, equation solvers, . . . 
 

1955-60 High level Languages - Fortran 1956 

Operating Systems -    
   - Assemblers, Loaders, Linkers, Compilers 

   - Accounting programs to keep track of  
      usage and charges 
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up to 1955 Libraries of numerical routines 
   - Floating point operations 
    - Transcendental functions 
    - Matrix manipulation, equation solvers, . . . 
 

1955-60 High level Languages - Fortran 1956 

Operating Systems -    
   - Assemblers, Loaders, Linkers, Compilers 

   - Accounting programs to keep track of  
      usage and charges 

 Machines required experienced operators 
 
• Most users could not be expected to understand 
           these programs, much less write them 
 
• Machines had to be sold with a lot of resident software 



Compatibility Problem at IBM 
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By early 1960’s, IBM had 4 incompatible lines of 
computers! 

701    7094 
650    7074 
702    7080 
1401    7010 

Each system had its own 
• Instruction set 
• I/O system and Secondary Storage:  
    magnetic tapes, drums and disks 
• assemblers, compilers, libraries,... 
• market niche business, scientific, real time, ... 
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By early 1960’s, IBM had 4 incompatible lines of 
computers! 

701    7094 
650    7074 
702    7080 
1401    7010 

Each system had its own 
• Instruction set 
• I/O system and Secondary Storage:  
    magnetic tapes, drums and disks 
• assemblers, compilers, libraries,... 
• market niche business, scientific, real time, ... 

 IBM 360 



IBM 360 : Design Premises  
Amdahl, Blaauw and Brooks, 1964 
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• The design must lend itself to growth and successor 
machines 

• General method for connecting I/O devices 
• Total performance - answers per month rather than bits per 

microsecond  programming aids 
• Machine must be capable of supervising itself without 

manual intervention 
• Built-in hardware fault checking and locating aids to reduce 

down time 
• Simple to assemble systems with redundant I/O devices, 

memories etc. for fault tolerance 
• Some problems required floating-point larger than 36 bits 

 



30 

IBM 360: A General-Purpose Register 
(GPR) Machine 

• Processor State 
– 16 General-Purpose 32-bit Registers 

• may be used as index and base register 

• Register 0 has some special properties  
– 4 Floating Point 64-bit Registers 

– A Program Status Word (PSW)  

• PC, Condition codes, Control flags 

•  A 32-bit machine with 24-bit addresses 
– But no instruction contains a 24-bit address! 

•  Data Formats 
– 8-bit bytes, 16-bit half-words, 32-bit words, 64-bit double-words 
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IBM 360: A General-Purpose Register 
(GPR) Machine 

• Processor State 
– 16 General-Purpose 32-bit Registers 

• may be used as index and base register 

• Register 0 has some special properties  
– 4 Floating Point 64-bit Registers 

– A Program Status Word (PSW)  

• PC, Condition codes, Control flags 

•  A 32-bit machine with 24-bit addresses 
– But no instruction contains a 24-bit address! 

•  Data Formats 
– 8-bit bytes, 16-bit half-words, 32-bit words, 64-bit double-words 

The IBM 360 is why bytes are 8-bits long today! 
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IBM 360: Initial Implementations 
          Model 30 . . .   Model 70 

 Storage 8K - 64 KB   256K - 512 KB 

 Datapath 8-bit   64-bit 

 Circuit Delay 30 nsec/level  5 nsec/level 

 Local Store Main Store  Transistor Registers 

 Control Store Read only 1sec Conventional circuits 

 

IBM 360 instruction set architecture (ISA) completely 
hid the underlying technological differences between 
various models. 

Milestone: The first true ISA designed as portable 
hardware-software interface! 
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IBM 360: Initial Implementations 
          Model 30 . . .   Model 70 

 Storage 8K - 64 KB   256K - 512 KB 

 Datapath 8-bit   64-bit 

 Circuit Delay 30 nsec/level  5 nsec/level 

 Local Store Main Store  Transistor Registers 

 Control Store Read only 1sec Conventional circuits 

 

IBM 360 instruction set architecture (ISA) completely 
hid the underlying technological differences between 
various models. 

Milestone: The first true ISA designed as portable 
hardware-software interface! 

 With minor modifications it still survives today! 



IBM 360: 47 years later… 
The zSeries z11 Microprocessor 

• 5.2 GHz in IBM 45nm PD-SOI CMOS technology 

• 1.4 billion transistors in 512 mm2 

• 64-bit virtual addressing 
– original S/360 was 24-bit, and S/370 was 31-bit extension 

• Quad-core design 

• Three-issue out-of-order superscalar pipeline 

• Out-of-order memory accesses 

• Redundant datapaths 
– every instruction performed in two parallel datapaths and 

results compared 

• 64KB L1 I-cache, 128KB L1 D-cache on-chip 

• 1.5MB private L2 unified cache per core, on-chip 

• On-Chip 24MB eDRAM L3 cache 

• Scales to 96-core multiprocessor with 768MB of 
shared L4 eDRAM 

[ IBM, Kevin Shum, HotChips, 2010] 
Image Credit: IBM 

Courtesy of International Business 
Machines Corporation, © International 

Business Machines Corporation. 
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Same Architecture  
Different Microarchitecture 

AMD Phenom X4 
• X86 Instruction Set 
• Quad Core 
• 125W 
• Decode 3 Instructions/Cycle/Core 
• 64KB L1 I Cache, 64KB L1 D Cache 
• 512KB L2 Cache 
• Out-of-order 
• 2.6GHz 

 
 

Intel Atom 
• X86 Instruction Set 
• Single Core 
• 2W 
• Decode 2 Instructions/Cycle/Core 
• 32KB L1 I Cache, 24KB L1 D Cache 
• 512KB L2 Cache 
• In-order 
• 1.6GHz 

Image  Credit: Intel 

Image  Credit: AMD 
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Different Architecture  
Different Microarchitecture 

AMD Phenom X4 
• X86 Instruction Set 
• Quad Core 
• 125W 
• Decode 3 Instructions/Cycle/Core 
• 64KB L1 I Cache, 64KB L1 D Cache 
• 512KB L2 Cache 
• Out-of-order 
• 2.6GHz 

 
 

IBM POWER7 
• Power Instruction Set 
• Eight Core 
• 200W 
• Decode 6 Instructions/Cycle/Core 
• 32KB L1 I Cache, 32KB L1 D Cache 
• 256KB L2 Cache 
• Out-of-order 
• 4.25GHz 

Image Credit: IBM 

Image  Credit: AMD 
Courtesy of International Business Machines 
Corporation, © International Business Machines Corporation. 
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Stack-Based Instruction Set 
Architecture (ISA) 

• Burrough’s B5000 (1960) 
• Burrough’s  B6700 
• HP 3000 
• ICL 2900 
• Symbolics 3600 
Modern 
• Inmos Transputer 
• Forth machines 
• Java Virtual Machine 
• Intel x87 Floating Point Unit 
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Hardware organization of the stack 

• Stack is part of the processor state 
  stack must be bounded and small 
      number of Registers, 
        not the size of main memory 

 

•  Conceptually stack is unbounded 
a part of the stack is included in the  
     processor state; the rest is kept in the 
     main memory 
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Stack Operations and 
Implicit Memory References 

• Suppose the top 2 elements of the stack are kept 
in registers and the rest is kept in the memory. 

 
Each push  operation        1 memory reference 
         pop  operation  1 memory reference 

                                               No Good! 
 

• Better performance by keeping the top N 
elements in registers, and memory references are 
made only when register stack overflows or 
underflows. 

 
         Issue - when to Load/Unload registers ? 
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Stack Size and Memory References 
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program stack (size = 2) memory refs 
push a  R0   a 
push b  R0 R1   b 
push c  R0 R1 R2  c, ss(a) 
*  R0 R1   sf(a) 
+  R0 
push a  R0 R1   a   
push d  R0 R1 R2  d, ss(a+b*c) 
push c  R0 R1 R2 R3  c, ss(a) 
*  R0 R1 R2  sf(a) 
+  R0 R1   sf(a+b*c) 
push e  R0 R1 R2  e,ss(a+b*c) 
-  R0 R1   sf(a+b*c) 
/  R0  

a b c * + a d c * + e - / 



Stack Size and Memory References 
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program stack (size = 2) memory refs 
push a  R0   a 
push b  R0 R1   b 
push c  R0 R1 R2  c, ss(a) 
*  R0 R1   sf(a) 
+  R0 
push a  R0 R1   a   
push d  R0 R1 R2  d, ss(a+b*c) 
push c  R0 R1 R2 R3  c, ss(a) 
*  R0 R1 R2  sf(a) 
+  R0 R1   sf(a+b*c) 
push e  R0 R1 R2  e,ss(a+b*c) 
-  R0 R1   sf(a+b*c) 
/  R0  

a b c * + a d c * + e - / 

4  stores, 4 fetches (implicit) 



Stack Size and Expression Evaluation 
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program stack (size = 4)  
push a  R0 
push b  R0 R1  
push c  R0 R1 R2 
*  R0 R1  
+  R0 
push a  R0 R1    
push d  R0 R1 R2 
push c  R0 R1 R2 R3 
*  R0 R1 R2 
+  R0 R1  
push e  R0 R1 R2 
-  R0 R1  
/  R0  

a b c * + a d c * + e - / 



Stack Size and Expression Evaluation 
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program stack (size = 4)  
push a  R0 
push b  R0 R1  
push c  R0 R1 R2 
*  R0 R1  
+  R0 
push a  R0 R1    
push d  R0 R1 R2 
push c  R0 R1 R2 R3 
*  R0 R1 R2 
+  R0 R1  
push e  R0 R1 R2 
-  R0 R1  
/  R0  

a b c * + a d c * + e - / 

a and c are 
“loaded” twice 

        
not the best 
use of registers! 
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C = A + B 

Push A 
Push B 
Add 
Pop C 

Load A 
Add B 
Store C 

Load R1, A 
Add R3, R1, B 
Store R3, C 

Load R1, A 
Load R2, B 
Add R3, R1, R2 
Store R3, C 



Classes of Instructions 

• Data Transfer 
– LD, ST, MFC1, MTC1, MFC0, MTC0 

• ALU 
– ADD, SUB, AND, OR, XOR, MUL, DIV, SLT, LUI 

• Control Flow 
– BEQZ, JR, JAL, TRAP, ERET 

• Floating Point 
– ADD.D, SUB.S, MUL.D, C.LT.D, CVT.S.W,  

• Multimedia (SIMD) 
– ADD.PS, SUB.PS, MUL.PS, C.LT.PS 

• String 
– REP MOVSB (x86) 
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Addressing Modes: 
How to Get Operands from Memory 

74 

Addressing 
Mode 

Instruction Function 

Register Add R4, R3, R2 Regs[R4] <- Regs[R3] + Regs[R2]                   ** 

Immediate Add R4, R3, #5 Regs[R4] <- Regs[R3] + 5                                ** 

Displacement Add R4, R3, 100(R1) Regs[R4] <- Regs[R3] + Mem[100 + Regs[R1]] 

Register 
Indirect 

Add R4, R3, (R1) Regs[R4] <- Regs[R3] + Mem[Regs[R1]] 

Absolute Add R4, R3, (0x475) Regs[R4] <- Regs[R3] + Mem[0x475] 

Memory 
Indirect 

Add R4, R3, @(R1) Regs[R4] <- Regs[R3] + Mem[Mem[R1]] 

PC relative Add R4, R3, 100(PC) Regs[R4] <- Regs[R3] + Mem[100 + PC] 

Scaled Add R4, R3, 100(R1)[R5] Regs[R4] <- Regs[R3] + Mem[100 + Regs[R1] + 
Regs[R5] * 4] 

** May not actually access memory! 



Data Types and Sizes 

• Types 
– Binary Integer 
– Binary Coded Decimal (BCD) 
– Floating Point 

• IEEE 754 
• Cray Floating Point 
• Intel Extended Precision (80-bit) 

– Packed Vector Data 
– Addresses 

• Width 
– Binary Integer  (8-bit, 16-bit, 32-bit, 64-bit) 
– Floating Point (32-bit, 40-bit, 64-bit, 80-bit) 
– Addresses (16-bit, 24-bit, 32-bit, 48-bit, 64-bit) 
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ISA Encoding 

Fixed Width: Every Instruction has same width 
• Easy to decode 
(RISC Architectures: MIPS, PowerPC, SPARC, ARM…) 
Ex: MIPS, every instruction 4-bytes 
Variable Length: Instructions can vary in width 
• Takes less space in memory and caches 
(CISC Architectures: IBM 360, x86, Motorola 68k, VAX…) 
Ex: x86, instructions 1-byte up to 17-bytes 
Mostly Fixed or Compressed: 
• Ex: MIPS16, THUMB (only two formats 2 and 4 bytes) 
• PowerPC and some VLIWs (Store instructions compressed, 

decompress into Instruction Cache 
(Very) Long Instruction Word: 
• Multiple instructions in a fixed width bundle 
• Ex: Multiflow, HP/ST Lx, TI C6000 
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ISA Encoding 

Fixed Width: Every Instruction has same width 
• Easy to decode 
(RISC Architectures: MIPS, PowerPC, SPARC, ARM…) 
Ex: MIPS, every instruction 4-bytes 
Variable Length: Instructions can vary in width 
• Takes less space in memory and caches 
(CISC Architectures: IBM 360, x86, Motorola 68k, VAX…) 
Ex: x86, instructions 1-byte up to 17-bytes 
Mostly Fixed or Compressed: 
• Ex: MIPS16, THUMB (only two formats 2 and 4 bytes) 
• PowerPC and some VLIWs (Store instructions compressed, 

decompress into Instruction Cache 
(Very) Long Instruction Word: 
• Multiple instructions in a fixed width bundle 
• Ex: Multiflow, HP/ST Lx, TI C6000 
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x86 (IA-32) Instruction Encoding 
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Immediate Displacement 
Scale, Index,  
Base 

ModR/M Opcode Instruction 
Prefixes 

0,1,2, or 4  
bytes 

0,1,2, or 4  
bytes 

1 byte 
(if needed) 

1 byte 
(if needed) 

1,2, or 3 
bytes 

Up to four 
Prefixes 
(1 byte  
each) 

x86 and x86-64 Instruction Formats 
Possible instructions 1 to 18 bytes long 



MIPS64 Instruction Encoding 
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Image Copyright © 2011, Elsevier Inc. All rights Reserved. 



Real World Instruction Sets 
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Arch Type # Oper # Mem  Data Size # Regs Addr Size Use 

Alpha Reg-Reg 3 0 64-bit 32 64-bit Workstation 

ARM Reg-Reg 3 0 32/64-bit 16 32/64-bit Cell Phones, 
Embedded 

MIPS Reg-Reg 3 0 32/64-bit 32 32/64-bit Workstation, 
Embedded 

SPARC Reg-Reg 3 0 32/64-bit 24-32 32/64-bit Workstation 

TI C6000 Reg-Reg 3 0 32-bit 32 32-bit DSP 

IBM 360 Reg-Mem 2 1 32-bit 16 24/31/64 Mainframe 

x86 Reg-Mem 2 1 8/16/32/
64-bit 

4/8/24 16/32/64 Personal 
Computers 

VAX Mem-Mem 3 3 32-bit 16 32-bit Minicomputer 

Mot. 6800 Accum. 1 1/2 8-bit 0 16-bit Microcontroler 



Why the Diversity in ISAs? 

Technology Influenced ISA 
• Storage is expensive, tight encoding important 
• Reduced Instruction Set Computer 

– Remove instructions until whole computer fits on die 

• Multicore/Manycore 
– Transistors not turning into sequential performance 

Application Influenced ISA 
• Instructions for Applications 

– DSP instructions 

• Compiler Technology has improved 
– SPARC Register Windows no longer needed 
– Compiler can register allocate effectively 
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Recap 
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Circuits 

Gates 
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Microarchitecture 

Instruction Set Architecture 
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Programming Language 

Algorithm 

Application 

Computer Architecture 
(ELE 475) 



Recap 

 • ISA vs Microarchitecture 

• ISA Characteristics 

– Machine Models 

– Encoding 

– Data Types 

– Instructions 

– Addressing Modes 
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Computer Architecture Lecture 1 

 

Next Class: Microcode and Review of Pipelining 
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