
Computer Architecture
ELE 475 / COS 475

Slide Deck 1: Introduction and
Instruction Set Architectures

David Wentzlaff

Department of Electrical Engineering

Princeton University

1

What is Computer Architecture?

 Application

2

What is Computer Architecture?

Physics

Application

3

What is Computer Architecture?

Physics

Application

Gap too large to
bridge in one step

4

What is Computer Architecture?

In its broadest definition,
computer architecture is the
design of the
abstraction/implementation
layers that allow us to
execute information
processing applications
efficiently using
manufacturing technologies

Physics

Application

Gap too large to
bridge in one step

5

What is Computer Architecture?

In its broadest definition,
computer architecture is the
design of the
abstraction/implementation
layers that allow us to
execute information
processing applications
efficiently using
manufacturing technologies

Physics

Application

Gap too large to
bridge in one step

6

Abstractions in Modern
Computing Systems

Physics

Devices

Circuits

Gates

Register-Transfer Level

Microarchitecture

Instruction Set Architecture

Operating System/Virtual Machines

Programming Language

Algorithm

Application

7

Abstractions in Modern
Computing Systems

Physics

Devices

Circuits

Gates

Register-Transfer Level

Microarchitecture

Instruction Set Architecture

Operating System/Virtual Machines

Programming Language

Algorithm

Application

Computer Architecture
(ELE 475)

8

Computer Architecture is Constantly
Changing

Physics

Devices

Circuits

Gates

Register-Transfer Level

Microarchitecture

Instruction Set Architecture

Operating System/Virtual Machines

Programming Language

Algorithm

Application
Application Requirements:
• Suggest how to improve architecture
• Provide revenue to fund development

Technology Constraints:
• Restrict what can be done efficiently
• New technologies make new arch

possible

9

Computer Architecture is Constantly
Changing

Physics

Devices

Circuits

Gates

Register-Transfer Level

Microarchitecture

Instruction Set Architecture

Operating System/Virtual Machines

Programming Language

Algorithm

Application
Application Requirements:
• Suggest how to improve architecture
• Provide revenue to fund development

Technology Constraints:
• Restrict what can be done efficiently
• New technologies make new arch

possible

Architecture provides feedback to guide
application and technology research
directions

10

Computers Then…

IAS Machine. Design directed by John von Neumann.
First booted in Princeton NJ in 1952
Smithsonian Institution Archives (Smithsonian Image 95-06151)

11

Computers Now

12

Robots

Supercomputers
Automobiles

Laptops

Set-top
boxes

Smart
phones

Servers
Media
Players

Sensor Nets

Routers

Cameras
Games

[from Kurzweil]

Major
Technology
Generations Bipolar

nMOS

CMOS

pMOS

Relays

Vacuum
Tubes

Electromechanical

13

Sequential Processor Performance

14
From Hennessy and Patterson Ed. 5 Image Copyright © 2011, Elsevier Inc. All rights Reserved.

Sequential Processor Performance

RISC

15
From Hennessy and Patterson Ed. 5 Image Copyright © 2011, Elsevier Inc. All rights Reserved.

Sequential Processor Performance

RISC

Move to multi-processor

16
From Hennessy and Patterson Ed. 5 Image Copyright © 2011, Elsevier Inc. All rights Reserved.

Course Structure

• Recommended Readings

• In-Lecture Questions

• Problem Sets

– Very useful for exam preparation

– Peer Evaluation

• Midterm

• Final Exam

17

Course Content Computer
Organization (ELE 375)

Computer Organization

• Basic Pipelined
Processor

~50,000 Transistors

Photo of Berkeley RISC I, © University of California (Berkeley)
18

Course Content Computer
Architecture (ELE 475)

Intel Nehalem Processor, Original Core i7, Image Credit Intel:
http://download.intel.com/pressroom/kits/corei7/images/Nehalem_Die_Shot_3.jpg

19

Course Content Computer
Architecture (ELE 475)

Intel Nehalem Processor, Original Core i7, Image Credit Intel:
http://download.intel.com/pressroom/kits/corei7/images/Nehalem_Die_Shot_3.jpg

~700,000,000 Transistors

20

Course Content Computer
Architecture (ELE 475)

Intel Nehalem Processor, Original Core i7, Image Credit Intel:
http://download.intel.com/pressroom/kits/corei7/images/Nehalem_Die_Shot_3.jpg

~700,000,000 Transistors

Computer Organization
(ELE 375) Processor

21

Course Content Computer
Architecture (ELE 475)

Intel Nehalem Processor, Original Core i7, Image Credit Intel:
http://download.intel.com/pressroom/kits/corei7/images/Nehalem_Die_Shot_3.jpg

~700,000,000 Transistors

Computer Organization
(ELE 375) Processor

• Instruction Level Parallelism
– Superscalar
– Very Long Instruction Word (VLIW)

• Long Pipelines (Pipeline
Parallelism)

• Advanced Memory and Caches
• Data Level Parallelism

– Vector
– GPU

• Thread Level Parallelism
– Multithreading
– Multiprocessor
– Multicore
– Manycore

22

Architecture vs. Microarchitecture

“Architecture”/Instruction Set Architecture:

• Programmer visible state (Memory & Register)
• Operations (Instructions and how they work)
• Execution Semantics (interrupts)
• Input/Output
• Data Types/Sizes
Microarchitecture/Organization:
• Tradeoffs on how to implement ISA for some metric

(Speed, Energy, Cost)
• Examples: Pipeline depth, number of pipelines, cache

size, silicon area, peak power, execution ordering, bus
widths, ALU widths

23

Software Developments

24

up to 1955 Libraries of numerical routines
 - Floating point operations
 - Transcendental functions
 - Matrix manipulation, equation solvers, . . .

1955-60 High level Languages - Fortran 1956

Operating Systems -
 - Assemblers, Loaders, Linkers, Compilers

 - Accounting programs to keep track of
 usage and charges

Software Developments

25

up to 1955 Libraries of numerical routines
 - Floating point operations
 - Transcendental functions
 - Matrix manipulation, equation solvers, . . .

1955-60 High level Languages - Fortran 1956

Operating Systems -
 - Assemblers, Loaders, Linkers, Compilers

 - Accounting programs to keep track of
 usage and charges

 Machines required experienced operators

• Most users could not be expected to understand
 these programs, much less write them

• Machines had to be sold with a lot of resident software

Compatibility Problem at IBM

26

By early 1960’s, IBM had 4 incompatible lines of
computers!

701  7094
650  7074
702  7080
1401  7010

Each system had its own
• Instruction set
• I/O system and Secondary Storage:
 magnetic tapes, drums and disks
• assemblers, compilers, libraries,...
• market niche business, scientific, real time, ...

Compatibility Problem at IBM

27

By early 1960’s, IBM had 4 incompatible lines of
computers!

701  7094
650  7074
702  7080
1401  7010

Each system had its own
• Instruction set
• I/O system and Secondary Storage:
 magnetic tapes, drums and disks
• assemblers, compilers, libraries,...
• market niche business, scientific, real time, ...

Compatibility Problem at IBM

28

By early 1960’s, IBM had 4 incompatible lines of
computers!

701  7094
650  7074
702  7080
1401  7010

Each system had its own
• Instruction set
• I/O system and Secondary Storage:
 magnetic tapes, drums and disks
• assemblers, compilers, libraries,...
• market niche business, scientific, real time, ...

 IBM 360

IBM 360 : Design Premises
Amdahl, Blaauw and Brooks, 1964

29

• The design must lend itself to growth and successor
machines

• General method for connecting I/O devices
• Total performance - answers per month rather than bits per

microsecond  programming aids
• Machine must be capable of supervising itself without

manual intervention
• Built-in hardware fault checking and locating aids to reduce

down time
• Simple to assemble systems with redundant I/O devices,

memories etc. for fault tolerance
• Some problems required floating-point larger than 36 bits

30

IBM 360: A General-Purpose Register
(GPR) Machine

• Processor State
– 16 General-Purpose 32-bit Registers

• may be used as index and base register

• Register 0 has some special properties
– 4 Floating Point 64-bit Registers

– A Program Status Word (PSW)

• PC, Condition codes, Control flags

• A 32-bit machine with 24-bit addresses
– But no instruction contains a 24-bit address!

• Data Formats
– 8-bit bytes, 16-bit half-words, 32-bit words, 64-bit double-words

31

IBM 360: A General-Purpose Register
(GPR) Machine

• Processor State
– 16 General-Purpose 32-bit Registers

• may be used as index and base register

• Register 0 has some special properties
– 4 Floating Point 64-bit Registers

– A Program Status Word (PSW)

• PC, Condition codes, Control flags

• A 32-bit machine with 24-bit addresses
– But no instruction contains a 24-bit address!

• Data Formats
– 8-bit bytes, 16-bit half-words, 32-bit words, 64-bit double-words

The IBM 360 is why bytes are 8-bits long today!

32

IBM 360: Initial Implementations
 Model 30 . . . Model 70

 Storage 8K - 64 KB 256K - 512 KB

 Datapath 8-bit 64-bit

 Circuit Delay 30 nsec/level 5 nsec/level

 Local Store Main Store Transistor Registers

 Control Store Read only 1sec Conventional circuits

IBM 360 instruction set architecture (ISA) completely
hid the underlying technological differences between
various models.

Milestone: The first true ISA designed as portable
hardware-software interface!

33

IBM 360: Initial Implementations
 Model 30 . . . Model 70

 Storage 8K - 64 KB 256K - 512 KB

 Datapath 8-bit 64-bit

 Circuit Delay 30 nsec/level 5 nsec/level

 Local Store Main Store Transistor Registers

 Control Store Read only 1sec Conventional circuits

IBM 360 instruction set architecture (ISA) completely
hid the underlying technological differences between
various models.

Milestone: The first true ISA designed as portable
hardware-software interface!

 With minor modifications it still survives today!

IBM 360: 47 years later…
The zSeries z11 Microprocessor

• 5.2 GHz in IBM 45nm PD-SOI CMOS technology

• 1.4 billion transistors in 512 mm2

• 64-bit virtual addressing
– original S/360 was 24-bit, and S/370 was 31-bit extension

• Quad-core design

• Three-issue out-of-order superscalar pipeline

• Out-of-order memory accesses

• Redundant datapaths
– every instruction performed in two parallel datapaths and

results compared

• 64KB L1 I-cache, 128KB L1 D-cache on-chip

• 1.5MB private L2 unified cache per core, on-chip

• On-Chip 24MB eDRAM L3 cache

• Scales to 96-core multiprocessor with 768MB of
shared L4 eDRAM

[IBM, Kevin Shum, HotChips, 2010]
Image Credit: IBM

Courtesy of International Business
Machines Corporation, © International

Business Machines Corporation.
34

Same Architecture
Different Microarchitecture

AMD Phenom X4
• X86 Instruction Set
• Quad Core
• 125W
• Decode 3 Instructions/Cycle/Core
• 64KB L1 I Cache, 64KB L1 D Cache
• 512KB L2 Cache
• Out-of-order
• 2.6GHz

Intel Atom
• X86 Instruction Set
• Single Core
• 2W
• Decode 2 Instructions/Cycle/Core
• 32KB L1 I Cache, 24KB L1 D Cache
• 512KB L2 Cache
• In-order
• 1.6GHz

Image Credit: Intel

Image Credit: AMD
35

Different Architecture
Different Microarchitecture

AMD Phenom X4
• X86 Instruction Set
• Quad Core
• 125W
• Decode 3 Instructions/Cycle/Core
• 64KB L1 I Cache, 64KB L1 D Cache
• 512KB L2 Cache
• Out-of-order
• 2.6GHz

IBM POWER7
• Power Instruction Set
• Eight Core
• 200W
• Decode 6 Instructions/Cycle/Core
• 32KB L1 I Cache, 32KB L1 D Cache
• 256KB L2 Cache
• Out-of-order
• 4.25GHz

Image Credit: IBM

Image Credit: AMD
Courtesy of International Business Machines
Corporation, © International Business Machines Corporation.

36

Where Do Operands Come from
And Where Do Results Go?

37

Where Do Operands Come from
And Where Do Results Go?

38

ALU

Where Do Operands Come from
And Where Do Results Go?

39

ALU

…

M
em

o
ry

P
ro

ce
ss

o
r

…

Where Do Operands Come from
And Where Do Results Go?

40

ALU

…

M
em

o
ry

Where Do Operands Come from
And Where Do Results Go?

41

Where Do Operands Come from
And Where Do Results Go?

42

…

TOS

ALU

P
ro

ce
ss

o
r

…

M
em

o
ry

Stack

Where Do Operands Come from
And Where Do Results Go?

43

…

TOS

ALU

P
ro

ce
ss

o
r

…

M
em

o
ry

ALU

P
ro

ce
ss

o
r

…

M
em

o
ry

Stack Accumulator

Where Do Operands Come from
And Where Do Results Go?

44

…

TOS

ALU

P
ro

ce
ss

o
r

…

M
em

o
ry

ALU

P
ro

ce
ss

o
r

…

M
em

o
ry

ALU

P
ro

ce
ss

o
r

…

M
em

o
ry

…

Stack Accumulator
Register-
Memory

Where Do Operands Come from
And Where Do Results Go?

45

…

TOS

ALU

P
ro

ce
ss

o
r

…

M
em

o
ry

ALU

P
ro

ce
ss

o
r

…

M
em

o
ry

ALU

P
ro

ce
ss

o
r

…

M
em

o
ry

…

Stack Accumulator
Register-
Memory

Register-
Register

ALU

P
ro

ce
ss

o
r

…

M
em

o
ry

…

Where Do Operands Come from
And Where Do Results Go?

46

…

TOS

ALU

P
ro

ce
ss

o
r

…

M
em

o
ry

ALU

P
ro

ce
ss

o
r

…

M
em

o
ry

ALU

P
ro

ce
ss

o
r

…

M
em

o
ry

…

Stack Accumulator
Register-
Memory

Register-
Register

0 1 2 or 3

Number Explicitly
Named Operands:

ALU

P
ro

ce
ss

o
r

…

M
em

o
ry

…

2 or 3

Stack-Based Instruction Set
Architecture (ISA)

• Burrough’s B5000 (1960)
• Burrough’s B6700
• HP 3000
• ICL 2900
• Symbolics 3600
Modern
• Inmos Transputer
• Forth machines
• Java Virtual Machine
• Intel x87 Floating Point Unit

47

…

TOS

ALU

P
ro

ce
ss

o
r

…

M
em

o
ry

Evaluation of Expressions

48

(a + b * c) / (a + d * c - e)

/

+

* + a e

-

a c

d c

*
b

Evaluation of Expressions

49

(a + b * c) / (a + d * c - e)

/

+

* + a e

-

a c

d c

*
b

Reverse Polish
 a b c * + a d c * + e - /

Evaluation of Expressions

50

(a + b * c) / (a + d * c - e)

/

+

* + a e

-

a c

d c

*
b

Reverse Polish
 a b c * + a d c * + e - /

Evaluation Stack

Evaluation of Expressions

51

(a + b * c) / (a + d * c - e)

/

+

* + a e

-

a c

d c

*
b

Reverse Polish
 a b c * + a d c * + e - /

Evaluation Stack
push a

a

Evaluation of Expressions

52

(a + b * c) / (a + d * c - e)

/

+

* + a e

-

a c

d c

*
b

Reverse Polish
 a b c * + a d c * + e - /

Evaluation Stack

a

b

Evaluation of Expressions

53

(a + b * c) / (a + d * c - e)

/

+

* + a e

-

a c

d c

*
b

Reverse Polish
 a b c * + a d c * + e - /

Evaluation Stack

a

push b

b

Evaluation of Expressions

54

(a + b * c) / (a + d * c - e)

/

+

* + a e

-

a c

d c

*
b

Reverse Polish
 a b c * + a d c * + e - /

Evaluation Stack

a

c

b

Evaluation of Expressions

55

(a + b * c) / (a + d * c - e)

/

+

* + a e

-

a c

d c

*
b

Reverse Polish
 a b c * + a d c * + e - /

Evaluation Stack

a

push c

c

b

Evaluation of Expressions

56

(a + b * c) / (a + d * c - e)

/

+

* + a e

-

a c

d c

*
b

Reverse Polish
 a b c * + a d c * + e - /

Evaluation Stack

a

c

b

Evaluation of Expressions

57

(a + b * c) / (a + d * c - e)

/

+

* + a e

-

a c

d c

*
b

Reverse Polish
 a b c * + a d c * + e - /

Evaluation Stack

a

multiply

*
b * c

c

b

Evaluation of Expressions

58

(a + b * c) / (a + d * c - e)

/

+

* + a e

-

a c

d c

*
b

Reverse Polish
 a b c * + a d c * + e - /

Evaluation Stack

a

b * c

Evaluation of Expressions

59

a

(a + b * c) / (a + d * c - e)

/

+

* + a e

-

a c

d c

*
b

Reverse Polish
 a b c * + a d c * + e - /

add
Evaluation Stack

b * c

Evaluation of Expressions

60

a

(a + b * c) / (a + d * c - e)

/

+

* + a e

-

a c

d c

*
b

Reverse Polish
 a b c * + a d c * + e - /

add

+

Evaluation Stack

b * c

Evaluation of Expressions

61

a

(a + b * c) / (a + d * c - e)

/

+

* + a e

-

a c

d c

*
b

Reverse Polish
 a b c * + a d c * + e - /

add

+

Evaluation Stack

b * c

a + b * c

Hardware organization of the stack

• Stack is part of the processor state
 stack must be bounded and small
  number of Registers,
 not the size of main memory

• Conceptually stack is unbounded
a part of the stack is included in the
 processor state; the rest is kept in the
 main memory

62

Stack Operations and
Implicit Memory References

• Suppose the top 2 elements of the stack are kept
in registers and the rest is kept in the memory.

Each push operation  1 memory reference
 pop operation  1 memory reference

 No Good!

• Better performance by keeping the top N
elements in registers, and memory references are
made only when register stack overflows or
underflows.

 Issue - when to Load/Unload registers ?

63

Stack Operations and
Implicit Memory References

• Suppose the top 2 elements of the stack are kept
in registers and the rest is kept in the memory.

Each push operation  1 memory reference
 pop operation  1 memory reference

 No Good!

• Better performance by keeping the top N
elements in registers, and memory references are
made only when register stack overflows or
underflows.

 Issue - when to Load/Unload registers ?

64

Stack Operations and
Implicit Memory References

• Suppose the top 2 elements of the stack are kept
in registers and the rest is kept in the memory.

Each push operation  1 memory reference
 pop operation  1 memory reference

 No Good!

• Better performance by keeping the top N
elements in registers, and memory references are
made only when register stack overflows or
underflows.

 Issue - when to Load/Unload registers ?

65

Stack Size and Memory References

66

program stack (size = 2) memory refs
push a R0 a
push b R0 R1 b
push c R0 R1 R2 c, ss(a)
* R0 R1 sf(a)
+ R0
push a R0 R1 a
push d R0 R1 R2 d, ss(a+b*c)
push c R0 R1 R2 R3 c, ss(a)
* R0 R1 R2 sf(a)
+ R0 R1 sf(a+b*c)
push e R0 R1 R2 e,ss(a+b*c)
- R0 R1 sf(a+b*c)
/ R0

a b c * + a d c * + e - /

Stack Size and Memory References

67

program stack (size = 2) memory refs
push a R0 a
push b R0 R1 b
push c R0 R1 R2 c, ss(a)
* R0 R1 sf(a)
+ R0
push a R0 R1 a
push d R0 R1 R2 d, ss(a+b*c)
push c R0 R1 R2 R3 c, ss(a)
* R0 R1 R2 sf(a)
+ R0 R1 sf(a+b*c)
push e R0 R1 R2 e,ss(a+b*c)
- R0 R1 sf(a+b*c)
/ R0

a b c * + a d c * + e - /

4 stores, 4 fetches (implicit)

Stack Size and Expression Evaluation

68

program stack (size = 4)
push a R0
push b R0 R1
push c R0 R1 R2
* R0 R1
+ R0
push a R0 R1
push d R0 R1 R2
push c R0 R1 R2 R3
* R0 R1 R2
+ R0 R1
push e R0 R1 R2
- R0 R1
/ R0

a b c * + a d c * + e - /

Stack Size and Expression Evaluation

69

program stack (size = 4)
push a R0
push b R0 R1
push c R0 R1 R2
* R0 R1
+ R0
push a R0 R1
push d R0 R1 R2
push c R0 R1 R2 R3
* R0 R1 R2
+ R0 R1
push e R0 R1 R2
- R0 R1
/ R0

a b c * + a d c * + e - /

a and c are
“loaded” twice

 
not the best
use of registers!

Machine Model Summary

70

…

TOS

ALU

P
ro

ce
ss

o
r

…

M
em

o
ry

ALU

P
ro

ce
ss

o
r

…
M

em
o

ry

ALU

P
ro

ce
ss

o
r

…

M
em

o
ry

…

Stack Accumulator
Register-
Memory

Register-
Register

ALU

P
ro

ce
ss

o
r

…

M
em

o
ry

…

Machine Model Summary

71

…

TOS

ALU

P
ro

ce
ss

o
r

…

M
em

o
ry

ALU

P
ro

ce
ss

o
r

…
M

em
o

ry

ALU

P
ro

ce
ss

o
r

…

M
em

o
ry

…

Stack Accumulator
Register-
Memory

Register-
Register

ALU

P
ro

ce
ss

o
r

…

M
em

o
ry

…

C = A + B

Machine Model Summary

72

…

TOS

ALU

P
ro

ce
ss

o
r

…

M
em

o
ry

ALU

P
ro

ce
ss

o
r

…
M

em
o

ry

ALU

P
ro

ce
ss

o
r

…

M
em

o
ry

…

Stack Accumulator
Register-
Memory

Register-
Register

ALU

P
ro

ce
ss

o
r

…

M
em

o
ry

…

C = A + B

Push A
Push B
Add
Pop C

Load A
Add B
Store C

Load R1, A
Add R3, R1, B
Store R3, C

Load R1, A
Load R2, B
Add R3, R1, R2
Store R3, C

Classes of Instructions

• Data Transfer
– LD, ST, MFC1, MTC1, MFC0, MTC0

• ALU
– ADD, SUB, AND, OR, XOR, MUL, DIV, SLT, LUI

• Control Flow
– BEQZ, JR, JAL, TRAP, ERET

• Floating Point
– ADD.D, SUB.S, MUL.D, C.LT.D, CVT.S.W,

• Multimedia (SIMD)
– ADD.PS, SUB.PS, MUL.PS, C.LT.PS

• String
– REP MOVSB (x86)

73

Addressing Modes:
How to Get Operands from Memory

74

Addressing
Mode

Instruction Function

Register Add R4, R3, R2 Regs[R4] <- Regs[R3] + Regs[R2] **

Immediate Add R4, R3, #5 Regs[R4] <- Regs[R3] + 5 **

Displacement Add R4, R3, 100(R1) Regs[R4] <- Regs[R3] + Mem[100 + Regs[R1]]

Register
Indirect

Add R4, R3, (R1) Regs[R4] <- Regs[R3] + Mem[Regs[R1]]

Absolute Add R4, R3, (0x475) Regs[R4] <- Regs[R3] + Mem[0x475]

Memory
Indirect

Add R4, R3, @(R1) Regs[R4] <- Regs[R3] + Mem[Mem[R1]]

PC relative Add R4, R3, 100(PC) Regs[R4] <- Regs[R3] + Mem[100 + PC]

Scaled Add R4, R3, 100(R1)[R5] Regs[R4] <- Regs[R3] + Mem[100 + Regs[R1] +
Regs[R5] * 4]

** May not actually access memory!

Data Types and Sizes

• Types
– Binary Integer
– Binary Coded Decimal (BCD)
– Floating Point

• IEEE 754
• Cray Floating Point
• Intel Extended Precision (80-bit)

– Packed Vector Data
– Addresses

• Width
– Binary Integer (8-bit, 16-bit, 32-bit, 64-bit)
– Floating Point (32-bit, 40-bit, 64-bit, 80-bit)
– Addresses (16-bit, 24-bit, 32-bit, 48-bit, 64-bit)

 75

ISA Encoding

Fixed Width: Every Instruction has same width
• Easy to decode
(RISC Architectures: MIPS, PowerPC, SPARC, ARM…)
Ex: MIPS, every instruction 4-bytes
Variable Length: Instructions can vary in width
• Takes less space in memory and caches
(CISC Architectures: IBM 360, x86, Motorola 68k, VAX…)
Ex: x86, instructions 1-byte up to 17-bytes
Mostly Fixed or Compressed:
• Ex: MIPS16, THUMB (only two formats 2 and 4 bytes)
• PowerPC and some VLIWs (Store instructions compressed,

decompress into Instruction Cache
(Very) Long Instruction Word:
• Multiple instructions in a fixed width bundle
• Ex: Multiflow, HP/ST Lx, TI C6000

76

ISA Encoding

Fixed Width: Every Instruction has same width
• Easy to decode
(RISC Architectures: MIPS, PowerPC, SPARC, ARM…)
Ex: MIPS, every instruction 4-bytes
Variable Length: Instructions can vary in width
• Takes less space in memory and caches
(CISC Architectures: IBM 360, x86, Motorola 68k, VAX…)
Ex: x86, instructions 1-byte up to 17-bytes
Mostly Fixed or Compressed:
• Ex: MIPS16, THUMB (only two formats 2 and 4 bytes)
• PowerPC and some VLIWs (Store instructions compressed,

decompress into Instruction Cache
(Very) Long Instruction Word:
• Multiple instructions in a fixed width bundle
• Ex: Multiflow, HP/ST Lx, TI C6000

77

x86 (IA-32) Instruction Encoding

78

Immediate Displacement
Scale, Index,
Base

ModR/M Opcode Instruction
Prefixes

0,1,2, or 4
bytes

0,1,2, or 4
bytes

1 byte
(if needed)

1 byte
(if needed)

1,2, or 3
bytes

Up to four
Prefixes
(1 byte
each)

x86 and x86-64 Instruction Formats
Possible instructions 1 to 18 bytes long

MIPS64 Instruction Encoding

79

Image Copyright © 2011, Elsevier Inc. All rights Reserved.

Real World Instruction Sets

80

Arch Type # Oper # Mem Data Size # Regs Addr Size Use

Alpha Reg-Reg 3 0 64-bit 32 64-bit Workstation

ARM Reg-Reg 3 0 32/64-bit 16 32/64-bit Cell Phones,
Embedded

MIPS Reg-Reg 3 0 32/64-bit 32 32/64-bit Workstation,
Embedded

SPARC Reg-Reg 3 0 32/64-bit 24-32 32/64-bit Workstation

TI C6000 Reg-Reg 3 0 32-bit 32 32-bit DSP

IBM 360 Reg-Mem 2 1 32-bit 16 24/31/64 Mainframe

x86 Reg-Mem 2 1 8/16/32/
64-bit

4/8/24 16/32/64 Personal
Computers

VAX Mem-Mem 3 3 32-bit 16 32-bit Minicomputer

Mot. 6800 Accum. 1 1/2 8-bit 0 16-bit Microcontroler

Why the Diversity in ISAs?

Technology Influenced ISA
• Storage is expensive, tight encoding important
• Reduced Instruction Set Computer

– Remove instructions until whole computer fits on die

• Multicore/Manycore
– Transistors not turning into sequential performance

Application Influenced ISA
• Instructions for Applications

– DSP instructions

• Compiler Technology has improved
– SPARC Register Windows no longer needed
– Compiler can register allocate effectively

81

Recap

82

Physics

Devices

Circuits

Gates

Register-Transfer Level

Microarchitecture

Instruction Set Architecture

Operating System/Virtual Machines

Programming Language

Algorithm

Application

Computer Architecture
(ELE 475)

Recap

 • ISA vs Microarchitecture

• ISA Characteristics

– Machine Models

– Encoding

– Data Types

– Instructions

– Addressing Modes

83

Physics

Devices

Circuits

Gates

Register-Transfer Level

Microarchitecture

Instruction Set Architecture

Operating System/Virtual Machines

Programming Language

Algorithm

Application

Computer Architecture Lecture 1

Next Class: Microcode and Review of Pipelining

84

Acknowledgements

• These slides contain material developed and copyright by:
– Arvind (MIT)
– Krste Asanovic (MIT/UCB)
– Joel Emer (Intel/MIT)
– James Hoe (CMU)
– John Kubiatowicz (UCB)
– David Patterson (UCB)
– Christopher Batten (Cornell)

• MIT material derived from course 6.823
• UCB material derived from course CS252 & CS152
• Cornell material derived from course ECE 4750

85

Copyright © 2013 David Wentzlaff

86

