

Linear Circuits

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

An introduction to linear electric circuit elements and a study of circuits containing such devices.

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

Tesla Coil

Present how Tesla coils work, including mutual inductance and resonance.

Lesson Objectives

- Read Tesla coil schematic
- Analyze the behavior of a Tesla coil system

Tesla Coil

[1] Pereckas 2008

- Invented by Nikola Tesla around 1891
- Works by using
 - High voltage
 - Low current
 - High frequency
- Power transmission without using wires

Tesla Coil Schematic

Step-Up Transformer

[2] Classic Tesla

7

Mutual Inductance

Toroid - Capacitor to the World

Summary

- Tesla coils make use of several of the phenomena discussed in this class
- The circuit diagram incorporates the environment as part of the circuit

Resources

- I]Pereckas, Michael -Tesla Coil (2008) www.flicker.com/photos/beigephotos/
- [2]<u>www.classictelsa.com</u>
- [4]<u>Thegeekgroup.org</u>

