



# **Linear Circuits**

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

An introduction to linear electric circuit elements and a study of circuits containing such devices.







# Linear Variable Differential Transformer

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

Explore LVDT sensors – devices which use mutual inductance for measurement.





#### **Previous Lesson**

#### Ideal transformer model for analysis





### **Lesson Objectives**

- Explain how LVDT sensors work
- Identify relative position measured by a LVDT based on magnitude and phase





#### **Linear Variable Differential Transformer**



- Amplitude shows displacement
- Phase shows direction



#### **Benefits of LVDT**



- Capable of very high precision
- Completely electrically shielded
- Can operate in extreme conditions



### Summary

- Described the behavior of LVDT sensors
- Described how to identify the position by measuring the voltage and phase
- Described the benefits of such a sensor





