

Linear Circuits

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

An introduction to linear electric circuit elements and a study of circuits containing such devices.

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

Present transformers, a circuit device commonly used in power applications.

Transformers

Previous Lesson

Maximum power transfer in AC systems

Module 5: Power

- Root-Mean Square
- Power Factor and Power Triangles
- Maximum Power Transfer
- Transformers

Lesson Objectives

- Identify physical transformers and their circuit representations
- Describe the physical function of transformers

Transformer

Relationship of Magnetic Field and Current

- Ampere's Law
 Ampere's Law
- Faraday's Law of Induction

Transformers are AC devices

Two Transformer Models

- Linear Transformer Model
 - Used primarily for communications applications
 - Uses impedances for analysis
- Ideal Transformer Model
 - Used primarily for power transfer
 - Uses voltages and number of coil turns

Summary

- Introduced transformers as a circuit device
- Described the physical behavior of these devices
- Introduced two analysis models

Next Lesson

Describe in detail the liner transformer model

