

Linear Circuits

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

An introduction to linear electric circuit elements and a study of circuits containing such devices.

Power Factor and Power Triangles Part 2

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

Gain an understanding of the way that sinusoidal power is analyzed.

Previous Lesson

Calculated complex power

Identified what complex power represents

Module 5: Power

- Root-Mean Square
- Power Factor and Power Triangles
- Maximum Power Transfer
- Transformers

Lesson Objectives

- Use power triangles
- Calculate
 - Power angle and power factor
 - Real and reactive power
 - Apparent power

Review of Complex Power

Implications

- Only real power is being transformed to heat/light/etc.
- Reactive power causes increased current, so more power is consumed by resistive transmission lines
- Private customers generally only charged for real power, industrial customers charged for both

Summary

- Defined
 - Power angle and power factor
 - Real and reactive power
 - Apparent power
- Illustrated using power triangles

Next Lesson

- See how to control reactive power
- Maximum power transfer for AC circuits

