

Linear Circuits

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

An introduction to linear electric circuit elements and a study of circuits containing such devices.

Power Factor and Power Triangles Part 1

Nathan V. Parrish PhD Candidate & Graduate Research Assistant School of Electrical and Computer Engineering

Gain an understanding of the way that sinusoidal power is analyzed.

Previous Lesson

Calculated RMS values

Sinusoid and triangular function examples

Module 5: Power

- Root-Mean Square
- Power Factor and Power Triangles
- Maximum Power Transfer
- Transformers

Lesson Objectives

- Identify average power in resistive and reactive devices
- Calculate complex power

Instantaneous Power

Average Power

Average Power

Complex Power

What Complex Power Represents

- Calculated complex power
- Identified the meaning behind complex power

Next Lesson

- Power triangles
- Define important quantities for power analysis

