#### Georgialnstitute of Technology

1 HT



# **Linear Circuits**

**Dr. Bonnie H. Ferri** Professor and Associate Chair School of Electrical and Computer Engineering

An introduction to linear electric components and a study of circuits containing such devices.



#### Georgialnstitute of Technology

# Module 4 Frequency Analysis Wrap Up

**Dr. Bonnie H. Ferri** Professor and Associate Chair School of Electrical and Computer Engineering

Summary of the Module



Georgia School of Electrical and Tech Computer Engineering

## **Concept Map**





### **Resistive vs Reactive Circuits**





#### SINUSOIDS AND PHASORS

- Be able to
  - identify sinusoid properties (amplitude, frequency, angular frequency, period, phase)
  - find phasors of sinusoidal functions
  - add sinusoids using phasors
- Understand and describe the properties of sinusoids in capacitors and inductors



## IMPEDANCE

- Understand impedance
- Be able to
  - calculate impedances of resistors, capacitors, and inductors
  - identify the relationship between voltage and current based on impedance value





### **AC CIRCUIT ANALYSIS**

- Given a source frequency, be able to
  - convert RLC circuits into equivalent circuits with impedances
  - find equivalent impedances for devices in series/parallel
  - solve for voltages and currents using resistor analysis methods (Ohm's Law, KCL, KVL, Mesh, Node, Thévenin, Norton)





#### **TRANSFER FUNCTIONS**

- Know
  - the definition of a transfer function
  - how a linear system responds to a sinusoid in steady state (how the amplitude and phase change but the frequency stays the same)
  - the meaning of the plot of the transfer function in terms of finding an output amplitude
- Be able to
  - find the transfer functions of simple RL, RC and RLC circuits
  - sketch the magnitude and angle of the transfer functions of a first-order system on a linear scale



## FREQUENCY SPECTRUM

- Know
  Know
  - the definition of a frequency spectrum
- Be able to
  - plot a frequency spectrum of a sum of sinusoids
  - Recognize high and low frequency content in a signal in both the time domain and in the frequency domain





#### **FREQUENCY RESPONSE**

- Know
  Know
  - the what a frequency response is
  - and understand the graphical features of RC and RLC circuits when plotted on linear scales and on Bode scales
- Be able to
  - sketch a frequency response from a transfer function on linear scales
  - match time domain and frequency domain inputs and corresponding outputs for a circuit with a known frequency response

Georgia School of Electrical and Tech Computer Engineering

# **Important Concepts and Skills**

#### FILTERING

- Know
  Know
  - the motivation for using filters
  - the definition of a filter
  - the frequency response features of lowpass, highpass, bandpass, and notch filters
- Be able to
  - identify RC and RLC circuits as being lowpass, bandpass, highpass, or notch
  - determine acceptable circuit parameters to achieve desired bandwidth, corner frequencies, and/or passband or rejection frequencies



# Reminder

- Do all homework for this module
- Study for the quiz
- Continue to visit the forum

